Computed Tomography (CT) images have been extensively employed in disease diagnosis and treatment, causing a huge concern over the dose of radiation to which patients are exposed. Increasing the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients; on the other hand, decreasing it by using a Low-Dose CT (LDCT) image may cause more noise and increased artifacts, which can compromise the diagnosis. So, image reconstruction from LDCT image data is necessary to improve radiologists' judgment and confidence. This study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network (WGAN). They were incorporated with different loss functions, including Visual Geometry Group (VGG), Structural Similarity Loss (SSIM), and Structurally Sensitive Loss (SSL), to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss functions. Furthermore, experiments have been conducted on the Graphical Processing Unit (GPU) and Central Processing Unit (CPU) to compare the performance of the proposed models. The results demonstrated that images from the proposed WGAN-SSIM, WGAN-VGG-SSIM, and WGAN-VGG-SSL were denoised better than those from state-of-the-art models (WGAN, WGAN-VGG, and SMGAN) and converged to a stable equilibrium compared with WGAN and WGAN-VGG. The proposed models are effective in reducing noise, suppressing artifacts, and maintaining informative structure and texture details, especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio (PNSR) on both GPU (26.1336) and CPU (25.8270). The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 percent. Experiments prove that the WGAN-VGG-SSL is more stable than the other models on both GPU and CPU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.