We consider the thin-film equation ∂ t h + ∂ y m ( h ) ∂ y 3 h = 0 in {h > 0} with partial-wetting boundary conditions and inhomogeneous mobility of the form m(h) = h 3 + λ 3−n h n , where h ⩾ 0 is the film height, λ > 0 is the slip length, y > 0 denotes the lateral variable, and n ∈ (0, 3) is the mobility exponent parameterizing the nonlinear slip condition. The partial-wetting regime implies the boundary condition ∂ y h = const. > 0 at the triple junction ∂{h > 0} (nonzero microscopic contact angle). Existence and uniqueness of traveling-wave solutions to this problem under the constraint ∂ y 2 h → 0 as h → ∞ have been proved in previous work by Chiricotto and Giacomelli (2011 Commun. Appl. Ind. Math. 2 e-388, 16). We are interested in the asymptotics as h ↓ 0 and h → ∞. By reformulating the problem as h ↓ 0 as a dynamical system for the difference between the solution and the microscopic contact angle, values for n are found for which linear as well as nonlinear resonances occur. These resonances lead to a different asymptotic behavior of the solution as h ↓ 0 depending on n. Together with the asymptotics as h → ∞ characterizing the Cox–Voinov law for the velocity-dependent macroscopic contact angle as found by Giacomelli, the first author of this work, and Otto (2016 Nonlinearity 29 2497–536), the rigorous asymptotics of traveling-wave solutions to the thin-film equation in partial wetting can be characterized. Furthermore, our approach enables us to analyze the relation between the microscopic and macroscopic contact angle. It is found that the Cox–Voinov law for the macroscopic contact angle depends continuously differentiably on the microscopic contact angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.