The E6 and E7 of the cutaneous human papillomavirus (HPV) type 38 immortalize primary human keratinocytes, an event normally associated with the inactivation of pathways controlled by the tumour suppressor p53. Here, we show for the first time that HPV38 alters p53 functions. Expression of HPV38 E6 and E7 in human keratinocytes or in the skin of transgenic mice induces stabilization of wild-type p53. This selectively activates the transcription of DNp73, an isoform of the p53-related protein p73, which in turn inhibits the capacity of p53 to induce the transcription of genes involved in growth suppression and apoptosis. DNp73 downregulation by an antisense oligonucleotide leads to transcriptional re-activation of p53-regulated genes and apoptosis. Our findings illustrate a novel mechanism of the alteration of p53 function that is mediated by a cutaneous HPV type and support the role of HPV38 and DNp73 in human carcinogenesis.
For the p53 Special IssueFunctional loss of the tumor suppressor p53 by alterations in its TP53 gene is a frequent event in cancers of different anatomical regions. Cervical cancer is strongly linked to infection by high-risk human papillomavirus (HPV) types. The viral oncoprotein E6 has the ability to associate with and neutralize the function of p53. E6 interacts with a 100-kDa cellular protein, termed E6 associated protein (E6AP; also called ubiquitin-protein ligase E3A or UBE3A), which functions as an ubiquitin protein ligase. The dimeric complex then binds p53 and E6AP catalyzes multi-ubiquitination and degradation of p53. The ability to promote p53 degradation is an exclusive property of E6 from the high-risk HPV types. Indeed, the low-risk E6 proteins lack this activity, although they can bind p53. Consistent with the E6 function of the high-risk HPV types, the majority of cervical cancer cells have a wild-type p53 gene, but the protein levels are strongly decreased. Several independent studies have shown that in a small percentage of cervical tumors the p53 gene is mutated. However, this event appears to be unrelated to the presence or absence of HPV infection and the nature of the tumor. Hum Mutat 21:307-312,
Squamous cell carcinoma of the conjunctiva is associated with sun exposure and often occurs in HIV-positive individuals. We have analysed TP53 mutations in 21 cases of squamous cell carcinoma and 22 controls with benign conjunctival lesions from a region (Uganda, Africa) with a high prevalence of heavy sun exposure and HIV infection. TP53 mutations were detected in 11 cases (52%) and 3 controls (14%). Seven of the mutations (6 in cases and 1 in controls) were CC-->TT transitions, a molecular signature of mutagenesis by solar UV rays. A similar prevalence (56%) of TP53 mutations was found in 18 squamous cell carcinoma cases positive for epidermodysplasia verruciformis human papillomavirus types. The prevalence of CC-->TT transitions reported here is the highest observed in any cancer type and matches that of skin cancers in subjects with xeroderma pigmentosum, an inherited disease with hypersensitivity to UV damage. These results confirm at the molecular level the causal role of solar UV rays in the aetiology of squamous cell carcinoma of the conjunctiva and suggest that infection with epidermodysplasia verruciformis types of human papillomavirus may act as a cofactor to increase the sensitivity of conjunctiva cells to UV-induced mutagenesis.
A total of 21 squamous-cell carcinoma of the conjunctiva (SCC) and 22 control subjects had conjunctival samples tested for human papillomavirus (HPV) types using PCR-based assays. Epidermodysplasia verruciformis HPV types were found in 86% of SCC cases and 36% of control subjects (Odds ratio ¼ 12.0), suggesting a role of HPVs in the aetiology of SCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.