Plant root development is highly responsive both to changes in nitrate availability and beneficial microorganisms in the rhizosphere. We previously showed that Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacteria strain isolated from rapeseed roots, alleviates the inhibition exerted by high nitrate supply on lateral root growth. Since soil-borne bacteria can produce IAA and since this plant hormone may be implicated in the high nitrate-dependent control of lateral root development, we investigated its role in the root development response of Arabidopsis thaliana to STM196. Inoculation with STM196 resulted in a 50% increase of lateral root growth in Arabidopsis wild-type seedlings. This effect was completely abolished in aux1 and axr1 mutants, altered in IAA transport and signaling, respectively, indicating that these pathways are required. The STM196 strain, however, appeared to be a very low IAA producer when compared with the high-IAA-producing Azospirillum brasilense sp245 strain and its low-IAA-producing ipdc mutant. Consistent with the hypothesis that STM196 does not release significant amounts of IAA to the host roots, inoculation with this strain failed to increase root IAA content. Inoculation with STM196 led to increased expression levels of several IAA biosynthesis genes in shoots, increased Trp concentration in shoots, and increased auxin-dependent GUS staining in the root apices of DR5::GUS transgenic plants. All together, our results suggest that STM196 inoculation triggers changes in IAA distribution and homeostasis independently from IAA release by the bacteria.
Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.