There have been widespread attempts to recycle drinking water treatment residue (DWTR) after dewatering for environmental remediation, which is beneficial for both the environment and the economy. The directly discharged DWTR without dewatering to natural water bodies, however, was reported to show signs of chronic toxicity to Daphnia magna (D. magna), a typical zooplankton in the aquatic environment. This study comprehensively assessed the effect of dewatered DWTR on the physiological and biochemical characteristics of D. magna based on acute and chronic toxicity tests. The results showed that the survival, growth, reproduction, body morphology of offspring, and the antioxidant enzymes of D. magna were not affected by the dewatered DWTR. These physiological and biochemical indexes also had no undesirable changes for the DWTR-amended sediments (with ratios of 0–50%) incubated for 10 and 180 d; the growth and reproduction were even promoted when D. magna was exposed to 5000 mg-sediment L−1, which may be due to the extra nutrients supplied by the amended sediments for the animals. The results demonstrated that by contrast with the directly discharged DWTR without dewatering, the dewatered DWTR could be safe to D. magna. Further analysis suggested that heavy metals (Pb, Ni, Cu, Cr, and Zn) with relatively low concentrations and high stability could be the main reasons leading to the high safety of the dewatered DWTR. Overall, dewatered DWTR can be considered a non-hazardous material for zooplankton.
This paper is concerned with the delay-dependent stability and robust stability for uncertain systems with timevarying delay. Through constructing a general form of Lyapunov-Krasovskii functional, and using slack matrices and the convex combination condition in the calculation, the delay-dependent stability criteria are derived in terms of linear matrix inequalities without applying any bounding techniques. Numerical examples are given to illustrate the improvement on the conservatism of the delay bound over some existing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.