Abstract. Segmentation is a best method to divide the required region from the medical images. This research is based on segmentation of medical images (MRI, CT scans) based on the previous method known as pre-operative and post-recurrence tumor registration (PORTR) and proposed method biography based neural clustering (BBNC) with genetic processing for tumor segmentation. By using the new technique the extracted part can be view in 3D model and also can get the actual segmented tumor region. This new method will be helpful for diagnostics to find the tumor area as well as pixel difference in segmented part to define the tumor area accurately. While in the previous approach all the parameters have been used likewise, in which the registration method is used to transform the different sets of data into one coordinate system for segmentation of medical images. Registration basically is used to improve the signals to reduce the noise from the images. These techniques are better to find the tumor area from the MRI and CT scans, but after comparing them better results have been obtained in proposed technique. The proposed technique (BBNC) reduces the extracted region again into required and actual region of tumor with accuracy of area, time and pixel difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.