Under the background that the high penetration of renewable energy generation, which mainly consists of wind power, will have a significant impact on electric power systems due to the volatility and uncertainty of renewable energy, energy systems with gas–electric coupling and interconnections have been widely studied to accommodate renewable energy generation. This paper proposes a two-stage chance-constrained coordinated operation model of an integrated gas–electric system and fully considers the uncertainty and high penetration of wind power. The Taylor series expansion method is used to linearize the Weymouth gas flow equation of a natural gas system and finally obtains a mixed integer linear programming model. Case studies show the effectiveness of the integrated energy system for peak shaving, valley filling, and promoting wind power accommodation. The proposed model ensures the consumption of wind power generation and also reduces the operation cost by about 0.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.