Graphene‐like two‐dimensional materials (graphene, transition‐metal dichalcogenides (TMDCs)) have received extraordinary attention owing to their rich physics and potential applications in building nanoelectronic and nanophotonic devices. Recent works have concentrated on increasing the responsivity and extending the operation range to longer wavelengths. However, the weak absorption of gapless graphene, and the large bandgap (>1 eV) and low mobility in TMDCs have limited their spectral usage to only a narrow range in the visible spectrum. In this work, we demonstrate for the first time a high‐performance, antenna‐integrated, black phosphorus (BP)‐based photoconductor with ultra‐broadband detection from the infrared to terahertz frequencies. The good trade‐off between the moderate bandgap and good mobility results in a broad spectral absorption that is superior to that of graphene. Different photoconductive mechanisms, such as photothermoelectric (PTE), bolometric, and electron–hole generation can be distinguished depending on the device geometry, incident wavelength, and power. Especially, the photoconductive response remains highly efficient, even when the photon energy is extended to the terahertz (THz) band at room temperature, which is driven by the thermoelectric‐induced well. The proposed photodetectors have a superior performance with an excellent sensitivity of over 300 V W−1, low noise equivalent power (NEP) (smaller than 1 nW Hz−0.5 (10 pW Hz−0.5) with respect to the incident (absorbed) power), and fast response, all of which play key roles in multispectral biological imaging, remote sensing, and optical communications.
Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.