The purpose of this paper is to investigate the fatigue properties of C17200 alloy under the condition of quenching aging heat treatment at high temperatures, and to provide a design reference for its application in a certain temperature range. For this purpose, the tensile and rotary bending fatigue (RBF) tests were carried out at different temperatures (25 °C, 150 °C, 350 °C, and 450 °C). The tensile strength was obtained, and relationships between the applied bending stress levels and the number of fatigue fracture cycles were fitted to the stress-life (S-N) curves, and the related equations were determined. The fractured surfaces were observed and analyzed by a scanning electron microscopy (SEM). The results show that the RBF fatigue performance of C17200 alloy specimens is decreased with the increase in test temperature. When the temperature is below 350 °C, the performance degradation amplitudes of mechanical properties and RBF fatigue resistance are at a low level. However, compared to the RBF fatigue strength of 1 × 107 cycles at 25 °C, it is decreased by 38.4% when the temperature reaches 450 °C. It is found that the fatigue failure type of C17200 alloy belongs to surface defect initiation. Below 350 °C, the surface roughness of the fatigue fracture is higher, which is similar to the brittle fracture, so the boundary of the fracture regions is not obvious. At 450 °C, due to the further increase in temperature, oxidation occurs on the fracture surface, and the boundary of typical fatigue zone is obvious.
In this paper, the responses of machined surface roughness and milling tool cutting forces under the different milling processing parameters (cutting speed v, feed rate f, and axial cutting depth ap) are experimentally investigated to meet the increasing requirements for the mechanical machining of T2 pure copper. The effects of different milling processing parameters on cutting force and tool displacement acceleration are studied based on orthogonal and single-factor milling experiments. The three-dimensional morphologies of the workpieces are observed, and a white-light topography instrument measures the surface roughness. The results show that the degree of influence on Sa (surface arithmetic mean deviation) and Sq (surface root mean square deviation) from high to low level is the v, the f, and the ap. When v = 600 m/min, ap = 0.5 mm, f = 0.1 mm/r, Sa and Sq are 1.80 μm and 2.25 μm, respectively. The cutting forces in the three directions negatively correlate with increased cutting speed; when v = 600 m/min, Fx reaches its lowest value. In contrast, an increase in the feed rate and the axial cutting depth significantly increases Fx. The tool displacement acceleration amplitudes demonstrate a positive relationship. Variation of the tool displacement acceleration states leads to the different microstructure of the machined surfaces. Therefore, selecting the appropriate milling processing parameters has a positive effect on reducing the tool displacement acceleration, improving the machined surface quality of T2 pure copper, and extending the tool’s life. The optimal milling processing parameters in this paper are the v = 600 m/min, ap = 0.5 mm, and f = 0.1 mm/r.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.