Blockchain technology has been commonly used in the last years in numerous fields, such as transactions documenting and monitoring real assets (house, cash) or intangible assets (copyright, intellectual property). The internet of things (IoT) technology, on the other hand, has become the main driver of the fourth industrial revolution, and is currently utilized in diverse fields of industry. New approaches have been established through improving the authentication methods in the blockchain to address the constraints of scalability and protection in IoT operating environments of distributed blockchain technology by control of a private key. However, these authentication mechanisms do not consider security when applying IoT to the network, as the nature of IoT communication with numerous entities all the time in various locations increases security risks resulting in extreme asset damage. This posed many difficulties in finding harmony between security and scalability. To address this gap, the work suggested in this paper adapts multimodal biometrics to strengthen network security by extracting a private key with high entropy. Additionally, via a whitelist, the suggested scheme evaluates the security score for the IoT system with a blockchain smart contract to guarantee that highly secured applications authenticate easily and restrict compromised devices. Experimental results indicate that our system is existentially unforgeable to an efficient message attack, and therefore, decreases the expansion of infected devices to the network by up to 49 percent relative to traditional schemes.
In recent times, fitness trackers and smartphones equipped with different sensors like gyroscopes, accelerometers, global positioning system sensors and programs are used for recognizing human activities. In this paper, the results collected from these devices are used to design a system that can assist an application in monitoring a person’s health. The proposed system takes the raw sensor signals as input, preprocesses it and using machine learning techniques outputs the state of the user with minimum error. The objective of this paper is to compare the performance of different algorithms logistic regression (LR), support vector machine (SVM), k-nearest neighbor (k-NN) and random forest (RF). The algorithms are trained and tested with an original number of features as well as with transformed number of features (using linear discriminant analysis). The data with a smaller number of features is then used to visualize the high dimensional data. In this paper, each data point is mapped in the high dimensional data to two-dimensional data using t-distributed stochastic neighbor embedding technique. Overall, the first high dimensional data is visualized and compared with model’s performance with different algorithms and different number of coordinates.
It is crucial, while using healthcare data, to assess the advantages of data privacy against the possible drawbacks. Data from several sources must be combined for use in many data mining applications. The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures. Historically, numerous heuristics (e.g., greedy search) and metaheuristics-based techniques (e.g., evolutionary algorithm) have been created for the positive association rule in privacy preserving data mining (PPDM). When it comes to connecting seemingly unrelated diseases and drugs, negative association rules may be more informative than their positive counterparts. It is well-known that during negative association rules mining, a large number of uninteresting rules are formed, making this a difficult problem to tackle. In this research, we offer an adaptive method for negative association rule mining in vertically partitioned healthcare datasets that respects users' privacy. The applied approach dynamically determines the transactions to be interrupted for information hiding, as opposed to predefining them. This study introduces a novel method for addressing the problem of negative association rules in healthcare data mining, one that is based on the Tabu-genetic optimization paradigm. Tabu search is advantageous since it removes a huge number of unnecessary rules and item sets. Experiments using benchmark healthcare datasets prove that the discussed scheme outperforms state-of-the-art solutions in terms of decreasing side effects and data distortions, as measured by the indicator of hiding failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.