Desired mechanical properties like microstructure, micro hardness and wear resistance are the key parameters for which low carbon steel (AISI 1006) are widely selected. Surface heat treatment applied to improve these properties; traditionally surface heat treatments like induction hardening, in recent time’s laser surface hardening. In this work, thermochemical treatment (liquid nitriding) by using mixture from 61% NaCN, 15% K2CO3 and 24% KCL and followed by Nd:YAG laser surface treatment was done . The laser parameter were energy (0.89, 2, 4 and 9) J, spot diameter (0.790 ,0.33, 0.283 and 0.224) mm, pulses duration (1, 2.33, 4.47 and 9.87) ms with fix wavelength 1604nm. Laser surface treatment cycle was melting the layer surface, holding and rapid cooling in air medium. Optical microscopy (OM) and scanning electron microscope (SEM) has been used to study the microstructures and cross-sectional of molted and heat affected zones respectively. The wear test was done to measure the wear rate by using pin -on-disk principles were satisfied. The result shown that increasing in laser energy effects to increase in the area of melted and heat affected zones of nitriding steel. Also increasing in laser energy led to increase micro hardness about 61%, while wear rate decrease about 40 % and increased depth of molted zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.