Between April and September 1993, a nationwide outbreak of salmonellosis occurred in Germany which was traced to contaminated paprika and paprika-powdered potato chips. Of the estimated 1000 cases, children below 14 years were principally affected. Levels of 0.04-0.45 organisms per gram were found in the snacks. The infective dose was estimated at 4-45 organisms with an attack rate of 1 in 10,000 exposed persons. The unique feature of the outbreak was the variety of serovars involved. S. saintpaul, S. rubislaw and S. javiana were isolated during the same time period from paprika powder, spice mixtures, snacks and patients. Their clonal identity was confirmed by molecular typing methods. Furthermore, monophasic and non-motile strains of rare salmonella O-groups were isolated from both paprika products and patients. This is the largest documented outbreak due to contaminated spices which proved that even extremely low numbers of salmonellae adapted to the dry state were able to cause illness.
Noroviruses, which are members of the Caliciviridae family, represent the leading cause of nonbacterial gastroenteritis in developed countries; such norovirus infections result in high economic costs for health protection. Person-to-person contact, contaminated water, and foods, especially raw shellfish, vegetables, and fruits, can transmit noroviruses. We inactivated feline calicivirus, a surrogate for the nonculturable norovirus, in cell culture medium and mineral water by heat and high hydrostatic pressure. Incubation at ambient pressure and 75°C for 2 min as well as treatment at 450 MPa and 15°C for 1 min inactivated more than 7 log 10 PFU of calicivirus per ml in cell culture medium or mineral water. The heat and pressure time-inactivation curves obtained with the calicivirus showed tailing in the logarithmic scale. Modeling by nth-order kinetics of the virus inactivation was successful in predicting the inactivation of the infective virus particles. The developed model enables the prediction of the calicivirus reduction in response to pressures up to 500 MPa, temperatures ranging from 5 to 75°C, and various treatment times. We suggest high pressure for processing of foods to reduce the health threat posed by noroviruses.
The presence of a hemolysin-encoding gene, elyA orhlyA, from Shiga toxin-producing Escherichia coli (STEC) was detected by PCR in each of 95 strains tested. PCR products of elyA from human STEC isolates of serovars frequently detected in Germany, such as O157:H−, O103:H2, O103:H−, O26:H11, and O26:H−, showed nucleotide sequences identical to previously reported ones for O157:H7 and O111:H− strains. Compared to them, four elyA amplicons derived from human isolates of rare STEC serovars showed identity of about 98% but lacked anAluI restriction site. However, the nucleotide sequence of an amplicon derived from a porcine O138:K81:H− STEC strain was identical to the corresponding region of hlyA, encoding alpha-hemolysin, from E. coli. This hlyAamplicon showed 68% identity with the nucleotide sequence of the corresponding elyA fragment. It differed from theelyA PCR product in restriction fragments generated byAluI, EcoRI, and MluI. Of the 95 representative STEC strains, 88 produced hemolysin on blood agar supplemented with vancomycin (30 mg/liter), cefixime (20 μg/liter), and cefsulodin (3 mg/liter) (BVCC). The lowest added numbers of two to six STEC CFU per g of stool or per ml of raw milk were detectable on BVCC plates after seeding of the preenrichment broth, modified tryptic soy broth (mTSB) supplemented with novobiocin (10 mg/liter), with 16 STEC strains. These strains represented the seven prevailing serovars diagnosed from German patients. However, with ground-beef samples, PCR was essential to identify the lowest added numbers of two to six STEC CFU among colonies of hemolyzing Enterobacteriaceae, such as Serratia spp. and alpha-hemolysin-producing E. coli. We conclude that preenrichment of stool and food samples in mTSB for 6 h followed by overnight culturing on BVCC is a simple method for the isolation and presumptive identification of STEC.
Avian influenza viruses threaten the life of domestic terrestrial poultry and contaminate poultry meat and eggs. Recently, these viruses rarely infected humans but had a high mortality rate in Southeast Asia, the Middle East, and Egypt. Thereby, these viruses caused high economic costs for production of poultry and health protection. We inactivated a highly pathogenic avian influenza A virus of subtype H7N7 in cell culture medium and chicken meat by heat and high hydrostatic pressure. Because heat and pressure inactivation curves of the H7N7 virus showed deviations from first-order kinetics, a reaction order of 1.1 had to be selected. A mathematical inactivation model has been developed that is valid between 10 and 60 degrees C and up to 500 MPa, allowing the prediction of the reduction in virus titer in response to pressure, temperature, and treatment time. Incubation at 63 degrees C for 2 min and 500 MPa at 15 degrees C for 15 s inactivated more than 10(5) PFU/ml, respectively. Thus, we suggest high-pressure treatment of poultry and its products to avoid the possible health threat by highly pathogenic avian influenza viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.