O processo de alinhamento de ontologias é uma das etapas necessárias para que se possa reduzir a heterogeneidade semântica entre ontologias existentes. Este trabalho apresenta uma abordagem baseada em técnicas de aprendizado de máquina para gerar modelos classificadores de alinhamento de ontologias, tendo como base de dados os alinhamentos encontrados através de diferentes funções de similaridade.
Revista hospedada em: http://revistas.facecla.com.br/index.php/reinfo Forma de avaliação: double blind review Esta revista é (e sempre foi) eletrônica para ajudar a proteger o meio ambiente, mas, caso deseje imprimir esse artigo, saiba que ele foi editorado com uma fonte mais ecológica, a Eco Sans, que gasta menos tinta. ABSTRACTOntology alignment is a common and successful way to reduce the semantic heterogeneity among ontologies, relying on the application of similarity functions to decide whether a pair of entities from two input ontologies corresponds to each other. There are several similarity functions proposed in the literature capturing distinct and complementary perspectives, but the challenge is on how to combine their use. This paper presents a methodology to automatically learn a classifier that combines distinct string-based similarity functions for the ontology alignment task, through machine learning. The proposed approach was evaluated experimentally on sixteen scenarios defined on top of the Ontology Alignment Evaluation Initiative (OAEI).Key-words: ontologies; ontology matching; machine learning; classifier. RESUMO O alinhamento de ontologias é uma estratégia comum e que tem sido aplicada com sucesso para reduzir a heterogeneidade semântica entre ontologias de um mesmo domínio. Durante o processo de alinhamento são consideradas diferentes funções de similaridade a fim de selecionar corretamente os pares de entidades correspondentes entre as duas ontologias sendo alinhadas. Existem diversas funções de similaridade, mas o desafio atual está em como combiná-las para gerar alinhamentos de melhor qualidade. Este trabalho apresenta uma metodologia para gerar um modelo classificador, que combina diferentes funções de similaridade baseadas em string no alinhamento de ontologias, por meio de aprendizado de máquina. A abordagem proposta foi avaliada experimentalmente em dezesseis cenários definidos sobre a Iniciativa de Avaliação de Alinhamento de Ontologias (OAEI).Palavras-chave: ontologias; alinhamento de ontologias, aprendizado de máquina; classificador.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.