We investigate the coupled dynamics of charge and energy in interacting lattice models with dipole conservation. We formulate a generic hydrodynamic theory for this combination of fractonic constraints and numerically verify its applicability to the late-time dynamics of a specific bosonic quantum system by developing a microscopic non-equilibrium quantum field theory. Employing a self-consistent 1/N approximation in the number of field components, we extract all entries of a generalized diffusion matrix and determine their dependence on microscopic model parameters. We discuss the relation of our results to experiments in ultracold atom quantum simulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.