The receiving properties of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) depend on the surface quality and stability of the main reflector. Deformations of the main reflector as well as changes in the sub-reflector position affect the geometrical ray path length significantly. The deformation pattern and its impact on the VLBI results of conventional radio telescopes have been studied by several research groups using holography, laser tracker, close-range photogrammetry and laser scanner methods. Signal path variations (SPV) of up to 1 cm were reported, which cause, when unaccounted for, systematic biases of the estimated vertical positions of the radio telescopes in the geodetic VLBI analysis and potentially even affect the estimated scale of derived global geodetic reference frames. As a result of the realization of the VLBI 2010 agenda, the geodetic VLBI network is currently extended by several new radio telescopes, which are of a more compact and stiffer design and are able to move faster than conventional radio telescopes. These new telescopes will form the backbone of the next generation geodetic VLBI system, often referred to as VGOS (VLBI Global Observing System). In this investigation, for the first time the deformation pattern of this new generation of radio telescopes for VGOS is studied. ONSA13NE, one of the Onsala twin telescopes at the Onsala Space Observatory, was observed in several elevation angles using close-range photogrammetry. In general, these methods require a crane for preparing the reflector as well as for the data collection. To reduce the observation time and the technical effort during the measurement process, an unmanned aircraft system (UAS) was used for the first time. Using this system, the measurement campaign per elevation angle took less than 30 min. The collected data were used to model the geometrical ray path and its variations. Depending on the distance from the optical axis, the ray path length varies in a range of about ± 1 mm. To combine the ray path variations, an illumination function was introduced as weighting function. The resulting total SPV is about − 0.5 mm. A simple elevation-dependent SPV model is presented that can easily be used and implemented in VLBI data analysis software packages to correct for gravitational deformation in VGOS radio telescopes. The uncertainty is almost 200 µm (2σ) and is derived by Monte Carlo simulations applied to the entire analysis process. Keywords Ring-focus paraboloid • Radio telescope • Antenna deformation • VLBI • VGOS • Signal path variation • SQP • Reverse engineering • Photogrammetry • Unmanned aircraft system B Michael Lösler
ABSTRACT:Since a few years, micro UAS (unmanned aerial systems) with vertical take off and landing capabilities like quadro-or octocopter are used as sensor platform for Aerophotogrammetry. Since the restricted payload of micro UAS with a total weight up of 5 kg (payload only up to 1.5 kg), these systems are often equipped with small format cameras. These cameras can be classified as amateur cameras and it is often the case, that these systems do not meet the requirements of a geometric stable camera for photogrammetric measurement purposes. However, once equipped with a suitable camera system, an UAS is an interesting alternative to expensive manned flights for small areas. The operating flight height of the above described UAS is about 50 up to 150 meters above ground level. This low flight height lead on the one hand to a very high spatial resolution of the aerial imagery. Depending on the cameras focal length and the sensor's pixel size, the ground sampling distance (GSD) is usually about 1 up to 5 cm. This high resolution is useful especially for the automatic generation of homologous tie-points, which are a precondition for the image alignment (bundle block adjustment). On the other hand, the image scale depends on the object's height and the UAV operating height. Objects like mine heaps or construction sites show high variations of the object's height. As a result, operating the UAS with a constant flying height will lead to high variations in the image scale. For some processing approaches this will lead to problems e.g. the automatic tie-point generation in stereo image pairs. As precondition to all DEM generating approaches, first of all a geometric stable camera, sharp images are essentially. Well known calibration parameters are necessary for the bundle adjustment, to control the exterior orientations. It can be shown, that a simultaneous on site camera calibration may lead to misaligned aerial images. Also, the success rate of an automatic tie-point generation differs extremely between several photogrammetric software packages. In this article, the calibration results of a suitable camera system will be shown. For a small format consumer grade camera, the authors will give the proof of ability for photogrammetric measurements purposes. This includes the results of different processing approaches for DEM generation of environments showing high object height variations.
ABSTRACT:This article describes a specific image quality problem using an UAV and the commercially available multispectral camera Tetracam ADC Lite. The tests were carried out with commercially available UAV Multirotor MR-X 8 performed under normal use and conditions. The ADC Lite shows a remarkable rolling shutter effect caused by the movement and vibrations of the UAV and a slow readout speed of the sensor.Based on these studies the current state of a sensor development is presented, which is composed of two compact cameras with Foveon sensors. These cameras allow to record high quality image data without motion blur or rolling shutter effect. One camera captures the normal colour range; the second camera is modified for the near infrared.The moving parts of both cameras are glued to ensure that a geometric camera calibration is valid over a longer period of time. The success of the gluing procedure has been proven by multiple calibrations. For the matching of the colour-and infrared image the usability of calibrated relative orientation parameters between both cameras were tested. Despite absolutely synchronous triggering of the cameras by an electrical signal, a time delay can be found up to 3/100 s between the images. This time delay in combination with the movement and rotation of the UAV while taking the photos results in a significant error in the previously calibrated relative orientation. These parameters should not be used in further processing.This article concludes with a first result of a 4-channel image and an outlook on the following investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.