A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric Ar plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure N 2 to pure O 2 .The density of metastable argon ( ) Ar 4s, P
The pathway of the biologically active molecule hydrogen peroxide (H 2 O 2 ) from the plasma generation in the gas phase by an atmospheric pressure argon plasma jet, to its transition into the liquid phase and finally to its inhibiting effect on human skin cells is investigated for different feed gas humidity settings. Gas phase diagnostics like Fourier transformed infrared spectroscopy and laser induced fluorescence spectroscopy on hydroxyl radicals ( • OH) are combined with liquid analytics such as chemical assays and electron paramagnetic resonance spectroscopy. Furthermore, the viability of human skin cells is measured by Alamar Blue ® assay. By comparing the gas phase results with chemical simulations in the far field, H 2 O 2 generation and destruction processes are clearly identified. The net production rate of H 2 O 2 in the gas phase is almost identical to the H 2 O 2 net production rate in the liquid phase. Moreover, by mimicking the H 2 O 2 generation of the plasma jet with the help of an H 2 O 2 bubbler it is concluded that the solubility of gas phase H 2 O 2 plays a major role in generating hydrogen peroxide in the liquid. Furthermore, it is shown that H 2 O 2 concentration correlates remarkably well with the cell viability. Other species in the liquid like • OH or superoxide anion radical (O •− 2 ) do not vary significantly with feed gas humidity.
In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results.
Finding a solution for air species contamination of atmospheric pressure plasmas in plasma medical treatment is a major task for the new field of plasma medicine. Several approaches use complex climate chambers to control the surrounding atmosphere. In this paper, ambient species are excluded in plasma-human-skin-cell treatment by ensheathing the plasma jet effluent with a shielding gas. Not only does this gas curtain protect the plasma jet effluent from inflow of air species but it also, more importantly, allows controlling the effluent reactive species composition by adjusting the mixture of the shielding gas. In the present investigations, the mixture of nitrogen to oxygen within the gas curtain around an argon atmospheric pressure plasma jet (kinpen) is varied. The resulting reactive plasma components produced in the jet effluent are thus either oxygen or nitrogen dominated. With this gas curtain, the effect of reactive oxygen species (ROS) and reactive nitrogen species (RNS) on the cell viability of indirectly plasma-treated HaCaT skin cells is studied. This human keratinocyte cell line is an established standard for a skin model system. The cell viability is determined by a fluorometric assay, where metabolically active cells transform nonfluorescent resazurin to the highly fluorescent resorufin. Plasma jet and gas curtain are characterized by numerical flow simulation as well as by optical emission spectroscopy. The generation of nitrite within the used standard cell culture medium serves as a measure for generated RNS. Measurements with the leukodye dichlorodihydrofluorescein diacetate show that, despite a variation of the shielding gas mixture, the total amount of generated reactive oxygen plus nitrogen species is constant. It is shown that a plasma dominated by RNS disrupts cellular growth less than a ROSdominated plasma.Index Terms-Atmospheric pressure plasma jet, gas curtain, plasma liquid interaction, plasma medicine, reactive nitrogen species (RNS), reactive oxygen plus nitrogen species (RONS), reactive oxygen species (ROS), skin cells.
Atmospheric pressure plasma jets for biomedical applications are often sustained in He with small amounts of, for example, O 2 impurities and typically propagate into ambient air. The resulting poorly controlled generation of reactive species has motivated the use of gas shields to control the interaction of the plasma plume with the ambient gas. The use of different gases in the shield yields different behavior in the plasma plume. In this paper, we discuss results from experimental and computational investigations of He plasma jets having attaching and non-attaching gas shields. We found that negative ion formation in the He-air mixing region significantly affects the ionization wave dynamics and promotes the propagation of negative guided streamers through an electrostatic focusing mechanism. Results from standard and phase resolved optical emission spectroscopy ratios of emission from states of N 2 and He imply different electric fields in the plasma plume depending on the composition of the shielding gas. These effects are attributed to the conductivity in the transition region between the plasma plume and the shield gas, and the immobile charge represented by negative ions. The lower conductivity in the attaching mixtures enables more extended penetration of the electric field whereas the negative ions aid in focusing the electrons towards the axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.