The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH 3 OH 2 + and CD 3 OD 2 + have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH 3 OH 2 + and CD 3 OD 2 + , respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C-O bond, the major process being the three-body break-up forming CH 3 , OH and H (CD 3 , OD and D). The overall cross sections are best fitted by s = 1.2 AE 0.1 Â 10 À15 E À1.15AE0.02 cm 2 and s = 9.6 AE 0.9 Â 10 À16 E À1.20AE0.02 cm 2 for CH 3 OH 2 + and CD 3 OD 2 + , respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 AE 0.9 Â 10 À7 (T/300) À0.59AE0.02 cm 3 s À1 (CH 3 OH 2 + ) and k(T) = 9.1 AE 0.9 Â 10 À7 (T/300) À0.63AE0.02 cm 3 s À1 (CD 3 OD 2 + ) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH 3 + and H 2 O and subsequent dissociative recombination of the resulting CH 3 OH 2 + ion to yield methanol and hydrogen atoms is therefore very unlikely.
We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C − n , n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C − 2 molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10 −14 mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity. © 2013 AIP Publishing LLC. [http://dx
We describe the design of a novel type of storage device currently under construction at Stockholm University, Sweden, using purely electrostatic focussing and deflection elements, in which ion beams of opposite charges are confined under extreme high vacuum cryogenic conditions in separate "rings" and merged over a common straight section. The construction of this double electrostatic ion ring experiment uniquely allows for studies of interactions between cations and anions at low and well-defined internal temperatures and centre-of-mass collision energies down to about 10 K and 10 meV, respectively. Position sensitive multi-hit detector systems have been extensively tested and proven to work in cryogenic environments and these will be used to measure correlations between reaction products in, for example, electron-transfer processes. The technical advantages of using purely electrostatic ion storage devices over magnetic ones are many, but the most relevant are: electrostatic elements which are more compact and easier to construct; remanent fields, hysteresis, and eddy-currents, which are of concern in magnetic devices, are no longer relevant; and electrical fields required to control the orbit of the ions are not only much easier to create and control than the corresponding magnetic fields, they also set no upper mass limit on the ions that can be stored. These technical differences are a boon to new areas of fundamental experimental research, not only in atomic and molecular physics but also in the boundaries of these fields with chemistry and biology. For examples, studies of interactions with internally cold molecular ions will be particular useful for applications in astrophysics, while studies of solvated ionic clusters will be of relevance to aeronomy and biology.
We use a novel electrostatic ion storage ring to measure the radiative lifetime of the upper level in the 3p^{5} ^{2}P_{1/2}^{o}→3p^{5} ^{2}P_{3/2}^{o} spontaneous radiative decay in ^{32}S^{-} to be 503±54 sec. This is by orders of magnitude the longest lifetime ever measured in a negatively charged ion. Cryogenic cooling of the storage ring gives a residual-gas pressure of a few times 10^{-14} mbar at 13 K and storage of 10 keV sulfur anions for more than an hour. Our experimental results differ by 1.3σ from the only available theoretical prediction [P. Andersson et al., Phys. Rev. A 73, 032705 (2006)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.