To study the runaway electron (RE) dynamics during plasma discharge and develop scenarios for disruption mitigation, a hard x-ray (HXR) spectrometric system has been developed and commissioned at the ASDEX Upgrade tokamak (AUG). The diagnostic system consists of two high-performance spectrometers based on LaBr3(Ce) scintillation detectors supplied with advanced electronics and analysis algorithms. These spectrometers view the AUG tokamak chamber quasi-radially at the equatorial plane. The measurements were carried out in the RE beam generation regimes by injecting argon into a deuterium plasma. In the interaction of a developed RE beam with a heavy gas target, powerful bremsstrahlung flux is induced, reaching energy close to 20 MeV. The electron energy distributions were reconstructed from the measured HXR spectra by deconvolution methods. The experimentally obtained maximum RE energies at different discharge stages were compared with relativistic test particle simulations that include the effect of toroidal electric field, plasma collisional drag force, synchrotron deceleration force. It was observed that the electrons attain their maximum energies within 50-100 ms after the gas injection. It gradually decreases due to the drop in loop voltage, energy loss due to synchrotron radiation emission and collisions dissipation of energy with the background plasma. HXR measurements at the discharge with multiple deuterium pellet injections allowed observing the effects of plasma cooling and argon ion
Electron temperature measurements and electron thermal transport inferences will be critical to the nonactive and deuterium phases of ITER operation and will take on added importance during the alpha heating phase. The diagnostic must meet stringent criteria on spatial coverage and spatial resolution during full field operation. During the early phases of operation, it must operate equally well at half field. The key to the diagnostic is the front end design. It consists of a quasioptical antenna and a pair of calibration sources. The radial resolution of the diagnostic is less than 0.06 m. The spatial coverage extends at least from the core to the separatrix with first harmonic O-mode being used for the core and second harmonic X-mode being used for the pedestal. The instrumentation used for the core measurement at full field can be used for detection at half field by changing the detected polarization. Intermediate fields are accessible. The electron cyclotron emission systems require in situ calibration, which is provided by a novel hot calibration source. The critical component for the hot calibration source, the emissive surface, has been successfully tested. A prototype hot calibration source has been designed, making use of extensive thermal and mechanical modeling.
Hard X-ray (HXR) spectrometry in ITER can provide information about Runaway Electrons (REs) in tokamak plasmas. Non-trivial reconstruction techniques must be applied to study the Energy distribution of REs in tokamaks since the diagnostic signals are convoluted with the emission of bremsstrahlung radiation from REs reaching the detector and the detector response function. A developed tool, coupled with the PREDICT code, has been described in this report for reconstructing the Runaway Electron energy distribution function (REDF) from HXR spectrum. Bremsstrahlung emission spectra and the detector response function are utilized in a forward modelling process to generate synthetic HXR spectra for different test REDF to which artificial noise is added. These HXR spectra are utilized to reconstruct the REDFs that can provide information about the REs in the plasma. The reconstruction process has been applied to the ITER HXR Monitor configuration for the first time. The effect of reduced optical transmission efficiency is studied on the reconstruction process and the accuracy of the extracted RE parameters. The performance of the reconstruction process is also tested for different amount of photon counts to identify the minimum number of photon counts required for optimal reconstruction. Preliminary results of RE-current estimation using the reconstruction process are also presented.
Nascent observations about the influence of kinetic instabilities on electron cyclotron emission (ECE) from runaway electrons (REs) have been detected and explored at the Aditya-Upgrade (Aditya-U) tokamak. The developed broadband ECE radiometer system offers wideband measurements by integrating several radio frequency units with a fixed intermediate frequency receiver with multiple channels, which is a novel approach to meet the needs of the localized measurements at various toroidal fields and extend the system dynamic range. The low density ( n e ≤ 1 × 10−19 m−3) plasma discharges at Aditya-U are consistently accompanied by a 20%–40% increase in the ECE radiometer signal amplitude within 100 µs and sporadic step-like modulations. The Pitch Angle Scattering (PAS) of REs induced by kinetic instabilities is a potential candidate for their occurrence. This steep jump in the radiometer signals was detected due to its high temporal resolution of 10 µs. A “PREDICT” code that employs the relativistic test particle model validates these experimental findings of the radiometer diagnostic for the first time for Aditya-U tokamak. Preliminary observations of the ECE radiometer signals also show that additional gas puffs can be used to vary the trigger timings of such PAS events or even lead to their complete avoidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.