A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.
This paper presents methods for solution casting and transfer printing collections of individual single-walled carbon nanotubes (SWNTs) onto a wide range of substrates, including plastic sheets. The deposition involves introduction of a solvent that removes surfactant from a suspension of SWNTs as it is applied to a substrate. The subsequent controlled flocculation (cF) produces films of SWNTs with densities that can be varied between a few tubes per square micron to thick multilayers in a single deposition step and with orientation determined by the direction of solution flow. High-resolution rubber stamps inked in this manner can be used to print patterns of tubes with geometries defined by the relief structure on the surface of the stamp. Thin film transistors fabricated with these techniques demonstrate their potential use in flexible "macroelectronic" systems.
This paper demonstrates the use of arrays of networks of single wall carbon nanotubes (SWNTs) and electrical breakdown procedures for
building thin film transistors (TFTs) that have good, reproducible performance and high current output. Channel length scaling analysis of
these TFTs indicates that the resistance at the source/drain contacts is a small fraction of the device resistance, in the linear regime. When
measured with the channel exposed to air or coated by poly(methyl methacrylate) (PMMA), these transistors operate in the unipolar p mode.
By spin-coating the polymer polyethylenimine (PEI) on the channel region, these transistors can be switched to operate in the unipolar n
mode. Patterning the exposure of a single channel to PMMA and PEI yields p−n diodes. These results indicate that SWNT-TFTs can provide
the building blocks of complex complementary circuits for a range of applications in macroelectronics, sensors, and other systems.
We show that small diameter, single-walled carbon nanotubes can serve as templates for performing polymer imprint lithography with feature sizes as small as 2 nm − comparable to the size of an individual molecule. The angstrom level uniformity in the critical dimensions of the features provided by this unusual type of template provides a unique ability to investigate systematically the resolution of imprint lithography at this molecular scale. Collective results of experiments with several polymer formulations for the molds and the molded materials suggest that the density of cross-links is an important molecular parameter that influences the ultimate resolution in this process. Optimized materials enable reliable, repetitive patterning in this single nanometer range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.