Gastric cancer (GC) is a leading cause of cancer-related death worldwide. Transcription factors (TFs) are essential gene expression regulators, and play critical roles in cancer development. However, the biological actions and prognostic value of TFs in GC remain unclear. In this study, we identified a risk model based on a 14-TF signature to predict recurrence-free survival in patients with GC. We further analyzed the ability of 14-TF to predict recurrence-free survival time in GC and found that a higher expression level of metastasis-associated protein 2 (MTA2) was associated with shorter overall survival and disease-free survival time in GC. Through in vitro and in vivo experiments, we demonstrated that MTA2 significantly promotes GC growth and metastasis. Furthermore, we identified MTA2 binding to the promoter of minichromosome maintenance deficient 5 (MCM5), thereby promoting GC progression. Overall, these findings strongly support the prognostic potential of the 14-TFs signature and suggest that targeting MTA2 may be a promising strategy to treat GC.
BackgroundThe early spatiotemporal transmission of COVID-19 remains unclear. The community to healthcare agencies and back to community (CHC) model was tested in our study to simulate the early phase of COVID-19 transmission in Wuhan, China.MethodsWe conducted a retrospective study. COVID-19 case series reported to the Municipal Notifiable Disease Report System of Wuhan from December 2019 to March 2020 from 17 communities were collected. Cases from healthcare workers (HW) and from community members (CM) were distinguished by documented occupations. Overall spatial and temporal relationships between HW and CM COVID-19 cases were visualised. The CHC model was then simulated. The turning point separating phase 1 and phase 2 was determined using a quadratic model. For phases 1 and 2, linear regression was used to quantify the relationship between HW and CM COVID-19 cases.ResultsThe spatial and temporal distributions of COVID-19 cases between HWs and CMs were closely correlated. The turning point was 36.85±18.37 (range 15–70). The linear model fitted well for phase 1 (mean R2=0.98) and phase 2 (mean R2=0.93). In phase 1, the estimated α^s were positive (from 18.03 to 94.99), with smaller β^s (from 2.98 to 15.14); in phase 2, the estimated α^s were negative (from −4.22 to −81.87), with larger β^s (from 5.37 to 78.12).ConclusionTransmission of COVID-19 from the community to healthcare agencies and back to the community was confirmed in Wuhan. Prevention and control measures for COVID-19 in hospitals and among HWs are crucial and warrant further attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.