Nature has inspired a lot of problem solving techniques over the decades. More recently, researchers have increasingly turned to harnessing nature to solve problems directly. Ising machines are a good example and there are numerous research prototypes as well as many design concepts. They can map a family of NP-complete problems and derive competitive solutions at speeds much greater than conventional algorithms and in some cases, at a fraction of the energy cost of a von Neumann computer.However, physical Ising machines are often fixed in its problem solving capacity. Without any support, a bigger problem cannot be solved at all. With a simple divide-and-conquer strategy, it turns out, the advantage of using an Ising machine quickly diminishes. It is therefore desirable for Ising machines to have a scalable architecture where multiple instances can collaborate to solve a bigger problem. We then discuss scalable architecture design issues which lead to a multiprocessor Ising machine architecture. Experimental analyses show that our proposed architectures allow an Ising machine to scale in capacity and maintain its significant performance advantage (about 2200x speedup over a state-of-the-art computational substrate). In the case of communication bandwidth-limited systems, our proposed optimizations in supporting batch mode operation can cut down communication demand by about 4-5x without a significant impact on solution quality.
CCS CONCEPTS• Computer systems organization → Analog computers.
This paper addresses the challenges in accurate and real-time traffic congestion prediction under uncertainty by proposing Ising-Traffic, a dual-model Ising-based traffic prediction framework that delivers higher accuracy and lower latency than SOTA solutions. While traditional solutions face the dilemma from the trade-off between algorithm complexity and computational efficiency, our Ising-based method breaks away from the trade-off leveraging the Ising model's strong expressivity and the Ising machine's strong computation power. In particular, Ising-Traffic formulates traffic prediction under uncertainty into two Ising models: Reconstruct-Ising and Predict-Ising. Reconstruct-Ising is mapped onto modern Ising machines and handles uncertainty in traffic accurately with negligible latency and energy consumption, while Predict-Ising is mapped onto traditional processors and predicts future congestion precisely with only at most 1.8% computational demands of existing solutions. Our evaluation shows Ising-Traffic delivers on average 98X speedups and 5% accuracy improvement over SOTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.