Crude oil is an imperative energy source for the global economy. The future value of crude oil is challenging to anticipate due to its nonstationarity in nature. The focus of this research is to appraise the explosive behavior of crude oil during 2007–2022, including the most recent influential crisis COVID-19 pandemic, to forecast its prices. The crude oil price forecasts by the traditional econometric ARIMA model were compared with modern Artificial Intelligence (AI)-based Long Short-Term Memory Networks (ALSTM). Root mean square error (RMSE) and mean average percent error (MAPE) values have been used to evaluate the accuracy of such approaches. The results showed that the ALSTM model performs better than the traditional econometric ARIMA forecast model while predicting crude oil opening price on the next working day. Crude oil investors can effectively use this as an intraday trading model and more accurately predict the next working day opening price.
Bitcoin is a type of Cryptocurrency that relies on Blockchain technology and its growing popularity is leading to its acceptance as an alternative investment. However, the future value of Bitcoin is difficult to predict due to its significant volatility and speculative behavior. Considering this, the key objective of this research is to assess Bitcoins’ explosive behavior during 2013–2022 including the most volatile COVID-19 pandemic and Russia–Ukraine war period and to forecast its price by comparing the predictive abilities offive different econometric, machine learning and artificial Intelligence methods namely, ARIMA, Decision Tree, Random Forest, SVM, and Artificial Intelligence Long Short-Term Memory Network (AI-LSTM). The precision of such methodologies has been assessed using root mean square error (RMSE) and mean average per cent error (MAPE) values. The findings confirmed that the AI-LSTM model performs better than other forecast models in predicting Bitcoins’ opening price on the following working day. Therefore, Bitcoin traders, policymakers, and financial institutions can use the model effectively to better forecast the next day’s opening price.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.