We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the µm scale up to the Big Bang Nucleosynthesis limit of ∼10 7 m. Neutral LLPs with lifetimes above ∼ 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.
In this paper, we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as 'top taggers'. To facilitate further exploration, we have attempted to collect, harmonize and publish software implementations of these techniques.
We show that axion dark matter (DM) may be detectable through narrow radio lines emitted from neutron stars. The neutron star magnetosphere hosts a strong magnetic field and a plasma frequency that increases towards the neutron star surface. As the axions pass through the magnetosphere, they can resonantly convert into radio photons in a narrow region around the radius at which the plasma frequency equals the axion mass. The bandwidth of the signal is set by the small DM velocity dispersion far away from the neutron star. We solve the axion-photon mixing equations, including a full treatment of the magnetized plasma and associated anisotropic dielectric tensor, to obtain the conversion probability. We discuss possible neutron-star targets and how they may probe the QCD axion parameter space in the mass range of ∼0.2-40 µeV.arXiv:1804.03145v1 [hep-ph] 9 Apr 2018 for collaboration in the early stages of this project. We thank Anatoly Spitkovsky for detailed discussions regarding NS magnetospheres, and
This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of firstprinciple QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-ofthe-art Monte Carlo tools. Limitations of the experiments' ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
We present a new solution to the electroweak hierarchy problem. We introduce N copies of the Standard Model with varying values of the Higgs mass parameter. This generically yields a sector whose weak scale is parametrically removed from the cutoff by a factor of 1/ √ N . Ensuring that reheating deposits a majority of the total energy density into this lightest sector requires a modification of the standard cosmological history, providing a powerful probe of the mechanism. Current and near-future experiments will explore much of the natural parameter space. Furthermore, supersymmetric completions which preserve grand unification predict superpartners with mass below mW × M pl /MGUT ∼ 10 TeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.