Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.
Information concerning the expression kinetics and subcellular localization of HIV regulatory proteins is of importance in understanding the viral pathogenesis and may be relevant for drug and vaccine development, as well. We have used combined immunocytochemistry and in situ hybridization to study firstly, the order of expression of regulatory HIV-1 proteins Nef, Rev and Tat in relation to non-spliced and spliced mRNA expression and secondly, the subcellular localization of these proteins in acutely and chronically infected human T-cell lines. We used monoclonal antibodies against HIV-1 Nef, Tat, Rev and gp160, and RNA probes reacting either with all mRNAs (nef) or only with the full-length mRNA (gag-pol). In acutely infected MT-4 and H9 cells, four distinct phases of infection could be defined. In the first phase lasting from 0 to 6 h post-infection, only incoming virus could be demonstrated by gp160 immunocytochemistry. During the second, regulatory phase (6-9 h), abundant cytoplasmic expression of Nef, Rev and Tat proteins and a positive in situ RNA hybridization with the nef probe was seen, while the in situ hybridization with full-length mRNA probe and immunohistochemistry for gp160 were still negative. The productive phase (12-48 h) was characterized by abundant expression of full-length mRNA and gp160, and by the nuclear localization of Nef and Tat proteins. In contrast, an antibody that recognized the RRE binding region of the Rev protein localized Rev in the cytoplasm both during the regulatory and productive phase. During the fourth, cytopathic phase, the expression of mRNA or viral proteins decreased and the regulatory proteins studied were again mainly localized in the cytoplasm. Based on the results, we speculate that HIV Nef may function as a nuclear factor, and that Tat is possibly bound by cellular proteins before its transport to the nucleus.
Stat6 transcription factor is a critical mediator of IL-4-specific gene responses. Tyrosine phosphorylation is required for nuclear localization and DNA binding of Stat6. The authors investigated whether Stat6-dependent transcriptional responses are regulated through IL-4-induced serine/threonine phosphorylation. In Ramos B cells, the serine/threonine kinase inhibitor H7 inhibited IL-4-induced expression of CD23. Treatment with H7 did not affect IL-4R-mediated immediate signaling events such as tyrosine phosphorylation of Jak1, Jak3, insulin receptor substrate (IRS)-1 and IRS-2, or tyrosine phosphorylation and DNA binding of Stat6. To analyze whether the H7-sensitive pathway was regulating Stat6-activated transcription, we used reporter constructs containing different IL-4 responsive elements. H7 abrogated Stat6-, as well as Stat5-, mediated reporter gene activation and partially reduced C/EBP-dependent reporter activity. By contrast, IL-4-induced transcription was not affected by wortmannin, an inhibitor of the phosphatidyl-inositol 3′-kinase pathway. Phospho-amino acid analysis and tryptic phosphopeptide maps revealed that IL-4 induced phosphorylation of Stat6 on serine and tyrosine residues in Ramos cells and in 32D cells lacking endogenous IRS proteins. However, H7 treatment did not inhibit the phosphorylation of Stat6. Instead, H7 inhibited the IL-4-induced phosphorylation of RNA polymerase II. These results indicate that Stat6-induced transcription is dependent on phosphorylation events mediated by H7-sensitive kinase(s) but that it also involves serine phosphorylation of Stat6 by an H7-insensitive kinase independent of the IRS pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.