The Susong metamorphic complex (SSC) in the southern margin of the Dabie orogenic belt (DOB) in central-eastern China is a key metamorphic unit for understanding subduction and exhumation processes in the DOB. However, the formation age and metamorphic grade of the SSC remain uncertain, hampering our understanding of the mechanism of the formation of the DOB. An integrated study of field survey, regional metamorphic petrology, geothermobarometry, and U–Pb dating of zircon was carried out in this study. Our results reveal that the SSC was metamorphosed under epidote amphibolite- to amphibolite-facies conditions with average metamorphic P–T values of 0.98 ± 0.07 GPa and 531 ± 35 °C. The smooth spatial variation in peak P–T conditions and an apparent geothermal gradient of ~17 °C/km indicate that the SSC as a whole fall into Barrovian-type metamorphic environments. Zircon U–Pb dating for garnet–mica schists of sample ZT003, ZT005 and ZT006 yield five (Groups I to V), six (Groups I to VI) and five (Groups I to V) age groups, respectively, concentrating on the Meso-Neoarchean, early-middle Paleoproterozoic, middle Mesoproterozoic, early Neoproterozoic, Palaeozoic and Triassic-lower Jurassic. Therein, a 259–190 Ma (Group V) from zircons with Th/U ratios of <0.1 in sample ZT006 record the timing of both peak and retrograde metamorphism for the SSC. All other ages are detrital zircon ages, and from age provenances in the DOB or the Yangtze Block (YZB), indicating the YZB affinity of the SSC. The two youngest age populations of 427–415 Ma (Group VI) and 475–418 Ma (Group V) from samples ZT005 and ZT006, respectively, suggest that the formation age of the SSC could be Middle Devonian. The similarity of formation age and peak P-T conditions of the SSC to Foziling Group, located in the northernmost DOB, implies that both units formed the sedimentary cover on the passive continental margin of the YZB during the late Palaeozoic, and subducted into the middle-lower crust of 20–40 km depth as a whole, corresponding to the shallow subduction. Compared to the deep subduction defined by high-pressure (HP) and ultrahigh-pressure (UHP) units, larger differences in peak P–T conditions, age and geothermal gradient between two different tectonic environments happen. Accordingly, it is speculated that a transitional subduction from shallow to deep levels occurred at Moho depths during the Early Triassic, and is due to a change in subduction dip angle.