The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractFluorine is an essential element for life in the developed world that impacts hugely on the general public because many pharmaceuticals, agrochemicals, anaesthetics, materials and air conditioning materials owe their important properties to the presence of fluorine atoms within their structures.All fluorine atoms used in organic chemistry are ultimately sourced from a mined raw material, fluorspar (CaF 2 ), but, given current usage and global reserve estimates, there is only sufficient fluorspar available for a further 100 years. New large scale raw material sources of fluorine are available but must be sufficiently developed for the benefits of fluorinated systems to continue in the long term.1.
In Africa around 625 000 mortalities per annum (20% of HIV/AIDS related deaths) are due to the affects of the Cryptococcal meningitis (CM) fungal infection. Recently, the World Health Organisation (WHO) and the Infectious Disease Society of America (IDSA) recommended that the first line treatment for CM is a combination of amphotericin B and flucytosine, both now WHO Essential Medicines. However, flucytosine is not even registered for use in any African nation due, in part, to its relatively high cost of manufacture and lack of generic manufacturers. Currently, flucytosine is manufactured by an expensive four-step manufacturing process.Here we report a one-step continuous flow process involving the reaction of inexpensive cytosine with fluorine gas using stainless steel tubular laboratory and pilot-scale silicon carbide reactor devices which is readily scaleable to a manufacturing process with a low initial capital expenditure.
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.