The program AceDRG generates accurate stereochemical descriptions, and one or more conformations, of a given ligand. The program also analyses entries and extracts local environment-dependent atom types, bonds and angles from the Crystallography Open Database.
A syntax-correcting CIF parser, COD::CIF::Parser, is described that can parse CIF 1.1 files and accurately report the position and nature of the discovered syntactic problems while automatically correcting the most common and the most obvious syntactic deficiencies.
An algorithm to compute stoichiometrically correct molecular formulae from crystal structures is proposed. The algorithm’s output is suitable for high-volume automated searches in chemical databases and for linking crystallographic and chemical information.
Data curation practices of the Crystallography Open Database (COD) are described with additional focus being placed on the formal validation using the Crystallographic Information Framework (CIF). The cif_validate program, capable of validating CIF files against both the DDL1 and the DDLm dictionaries, is presented and used to process the entirety of the COD. Validation results collected from over 450 000 CIF files are demonstrated to be a useful resource in the data maintenance process as well as the development of the underlying ontologies. A set of programs intended to aid in the dictionary migration from DDL1 to DDLm is also presented.
Computer descriptions of chemical molecular connectivity are necessary for searching chemical databases and for predicting chemical properties from molecular structure. In this article, the ongoing work to describe the chemical connectivity of entries contained in the Crystallography Open Database (COD) in SMILES format is reported. This collection of SMILES is publicly available for chemical (substructure) search or for any other purpose on an open-access basis, as is the COD itself. The conventions that have been followed for the representation of compounds that do not fit into the valence bond theory are outlined for the most frequently found cases. The procedure for getting the SMILES out of the CIF files starts with checking whether the atoms in the asymmetric unit are a chemically acceptable image of the compound. When they are not (molecule in a symmetry element, disorder, polymeric species,etc.), the previously published cif_molecule program is used to get such image in many cases. The program package Open Babel is then applied to get SMILES strings from the CIF files (either those directly taken from the COD or those produced by cif_molecule when applicable). The results are then checked and/or fixed by a human editor, in a computer-aided task that at present still consumes a great deal of human time. Even if the procedure still needs to be improved to make it more automatic (and hence faster), it has already yielded more than 160,000 curated chemical structures and the purpose of this article is to announce the existence of this work to the chemical community as well as to spread the use of its results.Electronic supplementary materialThe online version of this article (10.1186/s13321-018-0279-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.