Medical waste incineration fly ash (MWIFA) contains heavy metals that are toxic by nature and pose numerous health risks. The paper deals with the suitability of MWIFA as a mineral filler in the bituminous layer as an alternative to conventional stone dust (SD) through an appropriate combination of engineering and environmental assessments. Engineering parameters, such as Marshall stability, stability loss, flow, unit weight, air voids (Va), voids filled with asphalt (VFA), and voids in the mineral aggregate (VMA) of the asphalt mixtures, were evaluated with varying filler ratios, from 2% to 10%. All parameters for both fillers at optimum bitumen content satisfied the Marshall Mix Design criteria. The optimum bitumen contents of all filler ratios were within the standard limit recommended by the Bangladesh Roads and Highways Department. It was found that mixes prepared with MWIFA can resist moisture effects, making them durable in the monsoon. The mixes with 5.5% MWIFA as mineral filler performed the best, whereas 9% SD filler was required to achieve similar performance. The environmental test results show no environmental restriction on stabilizing the MWIFA into paving mixtures. The mobility of heavy metals (As, Pb, Cu, Cr, Ni, Cd, Hg, and Zn) from the asphalt-MWIFA mix was insignificant. The cumulative concentrations of heavy metals (Cd, Ni, Zn, Cu, and Pb) from long-term leaching tests were far below the Dutch regulatory limit (U1). MWIFA can be considered an eco-friendly and sustainable mineral filler for the dense bituminous pavement layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.