Fractures of polymer material are one of the most frequent reasons for the repair of removable dental prostheses. Therefore, there is a constant endeavor to strengthen them, and polymer materials with high resistance to fracture are being developed. The aim of this study was to determine the flexural strength of polymer materials and their reinforcements and thus give preference to their clinical use. Specimens with dimensions 18 x 10 x 3 mm were tested after polymerization, immersion in water at a temperature 37 degrees C for 28 days, and thermocycling by using the "short-beam" method to determine the flexural strength. Microscopic examination was performed to determine the quality of bonding between the glass fibers and matrix. Common polymer materials (control group) demonstrated the lowest flexural strength, although, when reinforced with fibers they showed higher flexural strength, matching that of the tested high-impact strength resin. Thermocycled specimens had the highest flexural strength, whereas there was no difference (p > 0.05) between specimens tested after polymerization and immersion in water.
A new bonding system named Kevloc has been introduced. It is based on acrylization of the metal surface with the goal of preventing the occurrence of a marginal gap between the metal and the resin. The purpose of this investigation was to determine the values of the shear bond strength achieved using the Kevloc technique on Ag-Pd (Auropal SE) and Co-Cr (Basil S) alloys and to compare them with those obtained with the OVS technique. The shear bond strengths were measured with the Smitz-Schulmayer shear test in a universal testing machine for polymer materials. A microscope image analyzer was used to measure the thickness of bonding layers and to reveal the possible occurrence of the marginal gap with both techniques. No marginal gap was detected with either technique. Kevloc provided better results than OVS only in a group of specimens tested after polymerization. Immersion in water and thermocycling reduced the initially high bond strength values of Kevloc specimens, whereas the bond strength values of OVS specimens remained unchanged regardless of which aging treatment was used. Microscopic examination did not reveal the existence of the marginal gap for either bonding system. According to the results obtained, it can be concluded that the Kevloc bonding system does not provide better shearing bond strength than the OVS bonding system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.