Malnutrition and associated health problems are partly related to minerals and vitamins deficiencies where anemia and stunting are the major diseases affecting nearly half of pregnant women and about 20% children under age of five, respectively in developing countries. Despite the significant progress made in recent decades, prevalence of stunting in Ethiopia remains high (44%, among children) that necessitate the country yet to make significant investment in nutrition and health. Strategies designed to overcome the problem range from micronutrient rich foods supplement to complementing foods with vegetables and fruits. However, such strategies are expensive as well as not sustainable to reach the poor households of developing countries. The persistence of the problem calls for agriculture based alternative solutions such as agronomic biofortification and micronutrients biofortification through plant breeding. Utilization of crop wild relatives, local landraces and old cultivars are proved to contain sufficient grain micronutrients and their utilization in breeding programs can solve the deficiency of micronutrients such as zinc and iron. Similarly, agronomic biofortification could improve grain Zn and Fe contents in several folds. Application methods and crop developmental stages during which fortification applied significantly determine the efficiency of fortification. Foliar application at heading and milking stages could accumulate very high Zn and Fe in cereal grains. The synergistic effect of genetic and agronomic fortification could also be utilized to produce Zn and Fe rich food crops. Hence, linking agriculture with nutrition and health could offer equitable, effective, sustainable and cheap solutions to micronutrients malnutrition and their deficiency related health problems.
A field experiment was carried out in the 2020–2021 growing season, aiming at investigating the abiotic stress tolerance of oat (Avena sativa L.) with silicon and sulphur foliar fertilization treatments and monitoring the effect of treatments on the physiology, production and stress tolerance of winter oat varieties. In the Hungarian national list of varieties, six winter oat varieties were registered in 2020, and all of the registered varieties were sown in a small plot field experiment in Debrecen, Hungary. The drought tolerance of the oat could be tested, because June was very dry in 2021; the rainfall that month totaled 6 mm only despite a 30-year average of 66.5 mm, and the average temperature for the month was 3.2 °C higher than the 30-year average. Foliar application of silicon and sulphur fertilizers caused differences in the photosynthesis rate, total conductance to CO2, transpiration, water use efficiency, leaf area, chlorophyll content, carotenoid content, thousand kernel weight (TKW) and yield of winter oat. The application of silicon significantly increased the photosynthesis rate (16.8–149.3%), transpiration (5.4–5.6%), air–leaf temperature difference (16.2–43.2%), chlorophyll (1.0%) and carotenoid (2.5%) content. The yield increased by 10.2% (Si) and 8.0% (Si plus S), and the TKW by 3.3% (Si) and 5.0% (Si plus S), compared to the control plots. The plants in the control plots assimilated less CO2 while transpiring 1 m3 water more than in the Si, S or Si plus S fertilized plots. The effect of the silicon varied from 9.0 to 195.4% in water use efficiency (WUE) in the three development stages (BBCH52, BBCH65 and BBCH77). A lower leaf area index was measured in the foliar fertilized plots; even so, the yield was higher, compared to that from the control plots. Great variation was found in response to the foliar Si and S fertilization among winter oat varieties—in WUE, 2.0–43.1%; in total conductance to CO2, 4.9–37.3%; in leaf area, 1.6–34.1%. Despite the droughty weather of June, the winter oat varieties produced a high yield. The highest yield was in ‘GK Arany’ (7015.7 kg ha−1), which was 23.8% more than the lowest yield (‘Mv Kincsem’, 5665.6 kg ha −1). In the average of the treatments, the TKW increased from 23.9 to 33.9 g (41.8%). ‘Mv Hópehely’ had the highest TKW. Our results provide information about the abiotic stress tolerance of winter oat, which, besides being a good model plant because of its drought resistance, is an important human food and animal feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.