Creutzfeldt-Jakob disease (CJD) is a transmissible neurodegenerative disorder characterized by the accumulation of aggregates of a cellular protein, PrP, in the brain. In both human and animals, genetic alterations to the gene encoding PrP (PRNP in human) modulate susceptibility to CJD. The recent epidemic of bovine spongi-form encephalopathy in the UK has raised the possibility of transmission from animal produce to humans. To provide a baseline against which to assess possible risk factors, we have determined the frequencies of predisposing mutations and allelic variants in PRNP and their relative contributions to disease. Systematic PRNP genotype analysis was performed on suspected CJD cases referred to the National Surveillance Unit in the UK over the period 1990-1993. Inspection of 120 candidate cases revealed 67 patients with definite and probable CJD, based on clinical and neuropathological criteria. No PRNP mutations were detected in any of the remaining 53 patients assessed as "non-CJD". A disease-associated mutation in the PRNP gene was identified in nine (13.4%) definite and probable cases of CJD, a reliable estimate of the incidence of PRNP-related inherited CJD based on a prospective epidemiological series. Within the group of sporadic CJD patients (lacking PRNP mutations), we confirmed that the genotype distribution with respect to the common methionine/valine (Met/Val) polymorphism at codon 129 within PRNP was significantly different from the normal Caucasian population. The incidence of Met homozygosity at this site was more than doubled and correlated with increased susceptibility to the development of sporadic CJD. Unlike other recent studies, Val homozygosity was also confirmed to be a significant risk factor in sporadic CJD, with the relative risks for the three genotypes Met/Met: Val/Val:Met/Val being 11:4:1.
Mice carrying an ovine 18-lactoglobulin (BLG) transgene secrete BLG protein into their milk. To explore transgene expression stability, we studied expression levels in three BLG transgenic mouse lines. Unexpectedly, two lines exhibited variable levels of transgene expression. Copy number within lines appeared to be stable and there was no evidence of transgene rearrangement. In the most variable line, BLG production levels were stable within individual mice in two successive lactations. Backcrossing demonstrated that genetic background did not contribute significantly to variable expression. Tissue in situ hybridization revealed mosaicism of transgene expression within individual mammary glands from the two variable lines; in low expressors, discrete patches of cells expressing the transgene were observed. Transgene protein concentrations in milk reflected the proportion of epithelial cells expressing BLG mRNA. Furthermore, chromosomal in situ hybridization revealed that transgene arrays in both lines are situated close to the centromere. We propose that mosaicism of transgene expression is a consequence of the chromosomal location and/or the nature of the primary transgene integration event.f3-Lactoglobulin (BLG) is a major ovine milk protein. The function of BLG is unknown, though the crystal structure of bovine BLG is consistent with a role in vitamin A transport (1). We previously reported that mice carrying a sheep BLG transgene secrete BLG into their milk (2); BLG regulatory regions can direct expression of biomedical proteins into the milk of transgenic mice and sheep (3)(4)(5). In this context, it is important that transgene expression is stable. Unstable transgene expression has been described previously; Palmiter et al. (6) reported that the level of herpes simplex virus thymidine kinase expression could vary by more than an order of magnitude among progeny of the same founder. Although other transgene insertions express to variable degrees within individual cell lines or transgenic mouse lines (refs. 7-19; M. Mehtali and R.L., unpublished data), there has been no common explanation for the instability of expression. Unstable expression may be due to strong selection against the transgene, for instance by the failure of sperm fertility engendered by testicular thymidine kinase expression (7,8) or by the toxicity of high-level hepatic expression of plasminogen activator (9). A transgene inserted into the X chromosome (10) or an X-autosome translocation (20) generates mosaic expression due to stochastic X chromosome inactivation. Silencing has also been observed when the transgene integrates into repeat sequence or satellite DNA (11,12), whereas different levels of transgene expression between animals of the same lineage have been attributed to strain-specific modifier genes (13-15).Mosaic patterns of expression were also observed in transgenic animals bearing intestinal fatty-acid binding protein fusion transgenes (16). Here, mosaicism was attributed to a deficit of cis-acting elements in the tr...
The ability of an oocyte to support early embryonic development requires both nuclear and cytoplasmic maturation. We have investigated the effects of brain-derived neurotrophic factor (BDNF) on maturation of the bovine oocyte and embryo development after parthenogenetic activation. By RT-PCR and immunohistochemistry, cumulus and oocytes were shown to express mRNA and protein for BDNF and the p75 common neurotrophin receptor. However, mRNA for the BDNF-specific full length and truncated isoforms of the TrkB receptor are only detected in cumulus, suggesting that oocytes and cumulus differ in their capacity to respond to neurotrophin signalling. In in vitro maturation experiments, the proportion of cumulus oocyte complexes maturing to metaphase II was not altered by BDNF in groups lacking fetal calf serum (FCS), but was significantly lower than the positive control containing 10% FCS (P < 0.01). However, after maturation, the proportion of parthenogenetically activated oocytes forming blastocysts was highest for 10 ng/ml BDNF (24%, n = 95) followed by 100 ng/ml BDNF (18%, n = 91) and 10% FCS (15%, n = 103), which in turn were greater than no serum (10%, n = 83; P < 0.01). Maturation in the presence of a BDNF blocking antibody resulted in a blastocyst yield that was comparable to the absence of serum, and lower than in the presence of BDNF (P < 0.01). Similar effects on progression to metaphase II and blastocyst formation were observed using oocytes matured without cumulus. Together, these results provide the first evidence for a role for neurotrophins in promoting oocyte cytoplasmic competence to support embryonic development, despite being insufficient in the absence of serum to enhance nuclear maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.