Titanium and its alloys are the most popular biomaterials replacing hard tissues in implant surgeries. Clinicians are generally pleased by titanium mechanical properties and non-toxicity performances; on the other hand, there have been reported several cases of titanium implantation failure, phenomenon explained sometimes as "non adherence of human tissue to the metallic surface." Yet, researchers reported that titanium surfaces are favorable for osteoblasts adhesion. Therefore, titanium integration into the human body remains an unsolved problem. In the present study, biocompatibility tests were performed on titanium and TiO(2) nanotubes substrates, involving human bone marrow cells. The combination of a newly developed analytical model based on the hybrid interphase concept, applicable to systems consisting of inert materials when in contact with living tissues, together with experimental results, confirmed previous research studies and lead to the conclusion that osteoblasts adhere efficiently to titanium surfaces. However, the present results suggest that osteoblasts strong anchorage at the very first moment of their contact with the metallic material leads to their apoptosis. It is most probable that in several cases this is the reason of failed implantation surgeries involving titanium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.