Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48-and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.
In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit VACUOLAR PROTEIN SORTING2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.
Ubiquitination and deubiquitination regulate various cellular processes. We have recently shown that the deubiquitinating enzyme Associated Molecule with the SH3 domain of STAM3 (AMSH3) is involved in vacuole biogenesis and intracellular trafficking in Arabidopsis thaliana. However, little is known about the identity of its interaction partners and deubiquitination substrates. Here, we provide evidence that AMSH3 interacts with ESCRT-III subunits VPS2.1 and VPS24.1. The interaction of ESCRT-III subunits with AMSH3 is mediated by the MIM1 domain and depends on the MIT domain of AMSH3. We further show that AMSH3, VPS2.1, and VPS24.1 localize to class E compartments when ESCRT-III disassembly is inhibited by coexpression of inactive Suppressor of K+ transport Defect 1 (SKD1), an AAA-ATPase involved in the disassembly of ESCRT-III. We also provide evidence that AMSH3 and SKD1 compete for binding to VPS2.1. Furthermore, we show that the loss of AMSH3 enzymatic activity leads to the formation of cellular compartments that contain AMSH3, VPS2.1, and VPS24.1. Taken together, our study presents evidence that AMSH3 interacts with classical core ESCRT-III components and thereby provides a molecular framework for the function of AMSH3 in plants.
The conjugation of the ubiquitin-like modifier NEURAL PRECURSOR CELL-EXPRESSED DEVELOPMENTALLY DOWN-REGULATED PROTEIN8/RELATED TO UBIQUITIN1 (NEDD8/RUB1; neddylation) is best known as an important posttranslational modification of the cullin subunits of cullin-RING-type E3 ubiquitin ligases (CRLs). MLN4924 has recently been described as an inhibitor of NEDD8-ACTIVATING ENZYME1 (NAE1) in human. Here, we show that MLN4924 is also an effective and specific inhibitor of NAE1 enzymes from Arabidopsis (Arabidopsis thaliana) and other plant species. We found that MLN4924-treated wild-type seedlings have phenotypes that are highly similar to phenotypes of mutants with a partial defect in neddylation and that such neddylation-defective mutants are hypersensitive to MLN4924 treatment. We further found that MLN4924 efficiently blocks the neddylation of cullins in Arabidopsis and that MLN4924 thereby interferes with the degradation of CRL substrates and their downstream responses. MLN4924 treatments also induce characteristic phenotypes in tomato (Solanum lycopersicum), Cardamine hirsuta, and Brachypodium distachyon. Interestingly, MLN4924 also blocks the neddylation of a number of other NEDD8-modified proteins. In summary, we show that MLN4924 is a versatile and specific neddylation inhibitor that will be a useful tool to examine the role of NEDD8-and CRL-dependent processes in a wide range of plant species.
Post-translational modification by ubiquitin plays a key role in the regulation of endocytic degradation in which ubiquitinated plasma membrane cargos are transported to the vacuole for degradation dependent on the ESCRT (endosomal sorting complex required for transport) machinery. Arabidopsis AMSH3 (ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM 3) is a deubiquitinating enzyme that interacts with at least two subunits of the ESCRT-III machinery, VPS2.1 and VPS24.1. amsh3 null mutation causes seedling lethality, and amsh3 null mutants show defects in multiple intracellular trafficking pathways. In this study, we further analyzed the amsh3 mutant phenotype and showed that amsh3 accumulates membrane-associated ubiquitinated proteins, supporting the indication that AMSH3 functions in ubiquitin-mediated endocytic degradation. In accordance with this, an enzymatic inactive variant of AMSH3 inhibits the AvrPtoB-dependent endocytic degradation of CERK1 (CHITIN ELICITOR RECEPTOR KINASE 1). Furthermore, we showed that the interaction of AMSH3 with ESCRT-III is important for its function in planta. Together, our data indicate the importance of AMSH3 and the AMSH3-ESCRT-III interaction for deubiquitination and degradation of ubiquitinated membrane substrates in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.