Protists play a crucial role for ecosystem function(ing) and oxygen is one of the strongest barriers against their local dispersal. However, protistan diversity in freshwater habitats with oxygen gradients received very little attention. We applied high-throughput sequencing of the V9 region (18S rRNA gene) to provide a hitherto unique spatiotemporal analysis of protistan diversity along the oxygen gradient of a freshwater meromictic lake (Lake Alatsee, SW Germany). In the mixolimnion, the communities experienced most seasonal structural changes, with Stramenopiles dominating in autumn and Dinoflagellata in summer. The suboxic interface supported the highest diversity, but only 23 OTUs95% (mainly Euglenozoa, after quality check and removal of operational taxonomic units (OTUs) with less than three sequences) were exclusively associated with this habitat. Eukaryotic communities in the anoxic monimolimnion showed the most stable seasonal pattern, with Chrysophyta and Bicosoecida being the dominant taxa. Our data pinpoint to the ecological role of the interface as a short-term 'meeting point' for protists, contributing to the coupling of the mixolimnion and the monimolimnion. Our analyses of divergent genetic diversity suggest a high degree of previously undescribed OTUs. Future research will have to reveal if this result actually points to a high number of undescribed species in such freshwater habitats.
Predation by grazing protists in aquatic habitats can influence prokaryotic community structure and provides a source of new, labile organic matter. Due to methodological difficulties associated with studies of deep-sea (below photic zone) microbiota, trophic interactions between eukaryotes and prokaryotes in mesopelagic and bathypelagic realms are largely obscured. Further complicating matters, examinations of trophic interactions using water samples that have been exposed to upwards of hundreds of atmospheres of pressure change prior to initiating experiments can potentially introduce significant artifacts. Here we present results of the first study of protistan grazing in water layers ranging from the euphotic zone to the bathypelagic, utilizing the Microbial Sampler-Submersible Incubation Device (MS-SID) * that makes possible in situ studies of microbial activities. Protistan grazing in the mesopelagic and bathypelagic realm of the East Mediterranean Sea was quantified using fluorescently labeled prokaryotes (FLP) prepared from the naturally-occurring prokaryotic assemblages. These studies reveal daily prokaryotic removal due to grazing ranging from 31.3±5.9% at 40 m depth to 0.5±0.3% at 950 m. At 3540m depth, where a chemocline habitat exists with abundant and active prokaryotes above Urania basin, the daily consumption of prokaryotes by protists was 19.9±6.6% of the in situ abundance.
Phagotrophic protists are an important mortality factor of prokaryotes in most aquatic habitats. However, no study has assessed protistan grazing as loss factor of bacterial biomass across the stratification gradient of a temperate freshwater meromictic lake. Protistan grazing effect was quantified in the mixolimnion, the transition zone, and the sulfidic anoxic monimolimnion of Lake Alatsee (Germany). Grazing experiments were performed using prey analogues from the natural prokaryotic assemblage. Daily grazing effect declined from the mixolimnion to the monimolimnion. Heterotrophic flagellates were phagotrophically active in all three water horizons and the main grazers in the monimolimnion. Pigmented flagellates accounted for 70% of total grazing in the mixolimnion and ciliates only for a small fraction of grazing in each depth. Prokaryotic biomass removal peaked in the interface, but protistan impact on the respective prokaryotic abundance was low. Grazing in the anoxic monimolimnion was negligible, with prokaryotic turnover rate being only 0.4% of standing stock. Our results support the assumption that protistan predation in anoxic waters is lower than in oxygenated ones and identify the interface as a microhabitat that supports high grazer biomass, pinpointing the importance of purple sulfur bacteria as carbon source for the upper mixolimnion and the bottom monimolimnion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.