There is increasing evidence that physical cues, such as topography, can have a significant impact on the neural cell functions. With the aid of micro-and nanofabrication techniques, new types of cell culture platforms are developed and the effect of surface topography on the cells has been studied. The present review article aims at reviewing the existing body of literature reporting on the use of various topographies to study and control the morphology and functions of cells from nervous tissue, i.e. the neuronal and the neuroglial cells. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized.
1 This paper reviews our work on the application of ultrafast pulsed laser micro/ nanoprocessing for the three-dimensional ͑3D͒ biomimetic modification of materials surfaces. It is shown that the artificial surfaces obtained by femtosecond-laser processing of Si in reactive gas atmosphere exhibit roughness at both micro-and nanoscales that mimics the hierarchical morphology of natural surfaces. Along with the spatial control of the topology, defining surface chemistry provides materials exhibiting notable wetting characteristics which are potentially useful for open microfluidic applications. Depending on the functional coating deposited on the laser patterned 3D structures, we can achieve artificial surfaces that are ͑a͒ of extremely low surface energy, thus water-repellent and self-cleaned, and ͑b͒ responsive, i.e., showing the ability to change their surface energy in response to different external stimuli such as light, electric field, and pH. Moreover, the behavior of different kinds of cells cultured on laser engineered substrates of various wettabilities was investigated. Experiments showed that it is possible to preferentially tune cell adhesion and growth through choosing proper combinations of surface topography and chemistry. It is concluded that the laser textured 3D micro/ nano-Si surfaces with controllability of roughness ratio and surface chemistry can advantageously serve as a novel means to elucidate the 3D cell-scaffold interactions for tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.