Physiologically-based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi-random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis-Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?No single software platform allows practitioners to compare parametric and nonparametric estimates of calibrated physiologically-based pharmacokinetic (PBPK) model parameters. WHAT QUESTION DID THIS STUDY ADDRESS?How do a maximum likelihood parametric (quasi-random parametric expectation maximization) and nonparametric (nonparametric adaptive grid estimation) algorithms, and two Bayesian numerical methods (Hamiltonian Markov Chain Monte Carlo and MH) compare in results and timing for calibration of a PBPK model?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.