Fifty years after its discovery, the ovonic threshold switching (OTS) phenomenon, a unique nonlinear conductivity behavior observed in some chalcogenide glasses, has been recently the source of a real technological breakthrough in the field of data storage memories. This breakthrough was achieved because of the successful 3D integration of so-called OTS selector devices with innovative phase-change memories, both based on chalcogenide materials. This paves the way for storage class memories as well as neuromorphic circuits. We elucidate the mechanism behind OTS switching by new state-of-the-art materials using electrical, optical, and x-ray absorption experiments, as well as ab initio molecular dynamics simulations. The model explaining the switching mechanism occurring in amorphous OTS materials under electric field involves the metastable formation of newly introduced metavalent bonds. This model opens the way for design of improved OTS materials and for future types of applications such as brain-inspired computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.