The initial interaction between Streptococcus mutans and hard surfaces has been investigated using a rotating disc technique. The deposition to clean and BSA-coated glass of two strains of S.mutans, FA-1 (serotype b) and KPSK2 (serotype c), which exhibit different surface properties, was studied. Organisms were harvested from cultures grown in a chemostat at a dilution rate of 0.06 h-l and suspended in NaCl solutions of defined ionic strengths and pH values. The deposition of both strains showed a strong dependence on electrolyte concentration, particularly at low ionic strengths, which was inversely related to the zeta potentials of the organisms. Similarly, the ionic strength at which maximum deposition was first noted (critical coagulation concentration) for the two strains correlated with their relative potentials. Deposition was insensitive to changes in pH at an electrolyte concentration of 0.05 M. The maximum observed deposition did not approach values predicted by theory, suggesting that a further barrier to deposition, other than electrostatic repulsion, might exist. Under all experimental conditions, some of the deposited bacteria were observed to be oscillating, suggesting that they were held at a distance from the collector surface. The cells did not, however, appear to be deposited in a secondary minimum predicted by DLVO theory hence it may be that long-range polymer interactions are also involved in the deposition of these organisms.
A self-reinforced cellulosic material was produced exclusively from regenerated cellulose microcrystals. The level of reinforcement was controlled by tailoring the crystallinity of cellulose by controlling the dissolution of microcrystalline cellulose (MCC) before its regeneration process. After the cellulose regeneration a self-reinforced material was obtained in which cellulose crystals reinforced amorphous cellulose. This structure was produced by dissolution of MCC in a non-derivatising cosolvent N,N-dimethylacetamide/LiCl followed by subsequent cellulose regeneration in distilled H 2 O. The reduction of the overall crystallinity of self-reinforced regenerated cellulose was dependent on the dissolution time of the cellulose precursor. The crystallinity of regenerated cellulose was determined by wide angle X-ray diffraction. A reduction in crystal size from microcrystalline cellulose to regenerated cellulose was observed with increasing dissolution time in DMAc/LiCl cosolvent. The reduction in degree of crystallinity of regenerated cellulose led to a decrease in the tensile mechanical performance and thermal stability of the regenerated cellulose. The controlled dissolution of microcrystalline cellulose resulted in the modification of structural, physical, thermal properties and moisture uptake behaviour of regenerated cellulose.
A rotating disc method was used to compare the tendencies of two oral streptococci to deposit on to glass and polystyrene surfaces from electrolyte solutions of varying ionic strength. Streptococcus salivarius had a greater tendency to deposit than had Streptococcus mitior under these conditions. In addition to the balance of van der Waals' forces of attraction and electrostatic forces of repulsion, it is suggested that the adsorption to the glass and polystyrene surfaces of material present in the outer layers of the cell wall could play a significant part in the deposition of S. salivarius.
The solution properties of saliva and its role in conditioning both the substrate and the bacterial surface have been investigated with regard to the attachment of oral streptococci to hydroxyapatite surfaces. Saliva from eight subjects was used and the attachment of three organisms, Streptococcus mutans strains FA-1 (serotype b) and KPSK2 (serotype c) and S. sanguis T175-1, was studied. An adsorbed salivary layer on a hydroxyapatite surface substantially reduced the affinity of the organisms for the surface. Adsorbed saliva on the bacterial surfaces, however, tended to increase the organisms' affinity for saliva-coated apatite. The source of saliva was important in determining the extent of inhibition of attachment. The data indicated that the negatively charged and hydrophilic nature of salivary conditioning films was important in controlling bacterial adsorption to hydroxyapatite. The results also suggested that hydrophobic salivas could promote binding of the more hydrophobic bacteria known to be early colonizers of the teeth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.