Three-dimensional integrated circuits promise power, performance, and footprint gains compared to their 2D counterparts, thanks to drastic reductions in the interconnects' length through their smaller form factor. We can leverage the potential of 3D integration by enhancing MemPool, an open-source manycore design with 256 cores and a shared pool of L1 scratchpad memory connected with a low-latency interconnect. MemPool's baseline 2D design is severely limited by routing congestion and wire propagation delay, making the design ideal for 3D integration. In architectural terms, we increase MemPool's scratchpad memory capacity beyond the sweet spot for 2D designs, improving performance in a common digital signal processing kernel. We propose a 3D MemPool design that leverages a smart partitioning of the memory resources across two layers to balance the size and utilization of the stacked dies. In this paper, we co-explore the architectural and the technology parameter spaces by analyzing the power, performance, area, and energy efficiency of MemPool instances in 2D and 3D with 1 MiB, 2 MiB, 4 MiB, and 8 MiB of scratchpad memory in a commercial 28 nm technology node. We observe a performance gain of 9.1 % when running a matrix multiplication on the MemPool-3D design with 4 MiB of scratchpad memory compared to the MemPool 2D counterpart. In terms of energy efficiency, we can implement the MemPool-3D instance with 4 MiB of L1 memory on an energy budget 15 % smaller than its 2D counterpart, and even 3.7 % smaller than the MemPool-2D instance with one-fourth of the L1 scratchpad memory capacity.
Spin Torque Transfer Magnetic RAM (STT-MRAM) is a promising Non-Volatile Memory (NVM) technology achieving high density, low leakage power, and relatively small read/write delays. It provides a solution to improve the performance and to mitigate the leakage power consumption compared to SRAM-based processors. However, the process heterogeneity and the sophisticated back-end-of-line (BEOL) structure make it difficult to integrate the STT-MRAM in two-dimensional integrated circuits (2D ICs). In this paper, we implement a RISC-V-based processor with STT-MRAM using a heterogeneous 3D integration methodology. Compared with the SRAM-based 2D counterpart, the MRAM-based 3D IC provides up to 17.55% silicon area saving, together with either 34.74% performance gain or 13.90% energy reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.