ObjectivesNo intervention has been shown to prevent falls poststroke. We aimed to determine if perturbation-based balance training (PBT) can reduce falls in daily life among individuals with chronic stroke.DesignAssessor-blinded randomised controlled trial.SettingTwo academic hospitals in an urban area.InterventionsParticipants were allocated using stratified blocked randomisation to either ‘traditional’ balance training (control) or PBT. PBT focused on improving responses to instability, whereas traditional balance training focused on maintaining stability during functional tasks. Training sessions were 1 hour twice/week for 6 weeks. Participants were also invited to complete 2 ‘booster’ training sessions during the follow-up.ParticipantsEighty-eight participants with chronic stroke (>6 months poststroke) were recruited and randomly allocated one of the two interventions. Five participants withdrew; 42 (control) and 41 (PBT group) were included in the analysis.Primary and secondary outcome measuresThe primary outcome was rate of falls in the 12 months post-training. Negative binomial regression was used to compare fall rates between groups. Secondary outcomes were measures of balance, mobility, balance confidence, physical activity and social integration.ResultsPBT participants reported 53 falls (1.45 falls/person-year) and control participants reported 64 falls (1.72 falls/person-year; rate ratio: 0.85(0.42 to 1.69); p=0.63). Per-protocol analysis included 32 PBT and 34 control participants who completed at least 10/12 initial training sessions and 1 booster session. Within this subset, PBT participants reported 32 falls (1.07 falls/person-year) and control participants reported 57 falls (1.75 falls/person-year; rate ratio: 0.62(0.29 to 1.30); p=0.20). PBT participants had greater improvement in reactive balance control than the control group, and these improvements were sustained 12 months post-training. There were no intervention-related serious adverse effects.ConclusionsThe results are inconclusive. PBT may help to prevent falls in daily life poststroke, but ongoing training may be required to maintain the benefits.Trial registration numberISRCTN05434601; Results.
To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.
These findings suggest that PBT is promising for reducing falls post stroke. While this was not a randomized controlled trial, this study may provide sufficient evidence for implementing PBT in stroke rehabilitation practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.