Titanium carbide (TiC) reinforced nickel (Ni) matrix composites were processed via mechanical alloying (MA) followed by spark plasma sintering (SPS) process. Mechanical alloying has gained special attention as a powerful non-equilibrium process for fabricating amorphous and nanocrystalline materials, whereas spark plasma sintering (SPS) is a unique technique for processing dense and near net shape bulk alloys with homogenous microstructure. TiC reinforcement varied from 5 to 50 wt.% into nickel matrix to investigate its effect on the microstructure and mechanical behavior of Ni-TiC composites. All Ni-TiC composites powder was mechanically alloyed using planetary high energy ball mill with 400 rpm and ball to powder ratio (BPR) 15:1 for 24 h. Bulk Ni-TiC composites were then sintered via SPS process at 50 MPa pressure and 900–1200 °C temperature. All Ni-TiC composites exhibited higher microhardness and compressive strength than pure nickel due to the presence of homogeneously distributed TiC particles within the nickel matrix, matrix grain refinement, and excellent interfacial bonding between nickel and TiC reinforcement. There is an increase in Ni-TiC composites microhardness with an increase in TiC reinforcement from 5 to 50 wt.%, and it reaches the maximum value of 900 HV for Ni-50TiC composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.