Grapevine is subject to diseases that affect yield and wine quality caused by various pathogens including Botrytis cinerea. To limit the use of fungicides, an alternative is to use plant elicitors such as benzothiadiazole (BTH). We investigated the effect of a fungicide (Pyrimethanil) and an elicitor (benzothiadiazole) on plant defenses. Applications for two consecutive years in the vineyard significantly reduced gray mold. Two and seven days after treatments, the expressions of 48 genes involved in defenses showed differential modulation (up- or down-regulation) depending on treatment. Some genes were identified as potential markers of protection and were linked to an increase in total polyphenols (TP) in leaves. Surprisingly, the fungicide also induced the expression of defense genes and increased the polyphenol content. This suggests that BTH acts as an efficient elicitor in the vineyard and that Pyrimethanil may act, in part, as a defense-inducing agent on the vine.
Botryosphaeriaceae is a fungal family comprising many species involved in botryosphaeria dieback, a worldwide grapevine trunk disease. Currently, the interactions between Botryosphaeriaceae species and various grapevine cultivars are poorly understood and little data is available. This study investigated various life traits of five isolates belonging to four species of Botryosphaeriaceae found in French vineyards (Diplodia mutila, Diplodia seriata, Lasiodiplodia viticola and Neofusicoccum parvum). The two species N. parvum and L. viticola exhibited the highest optimal growth temperature and the best growth rates. They were also responsible for the most extensive necrosis and cankers in three Vitis vinifera cultivars (Cabernet Sauvignon, Merlot and Ugni-Blanc) that differed in susceptibility to botryosphaeria dieback, and in two genotypes resistant to downy and powdery mildew (RV4 and RV5). Identification of the extracellular toxins produced by isolates in culture media showed that the N. parvum isolate had a different metabolite profile from the others, producing terremutin and salicylic acid derivatives, which are known to be compounds associated with virulence. In a second step, life traits were associated with nondestructive monitoring of gene expression involved in the defence mechanisms of five grapevine cultivars and genotypes after inoculation of wood cuttings with Botryosphaeriaceae. The transcript analyses were carried out at different times and were associated with principal component analysis (PCA). Each cultivar presented a specific transcript signature and several transcripts were correlated either with the size of necrosis/cankers or with symptom reduction, thus offering useful markers for breeding or estimating the defence status of plants.
The increasing use of plant defense stimulators (PDS) and biostimulants (BS) to make agriculture more sustainable has led to questions about their action on plants. A new PhysBioGen approach is proposed with complementary tools: PHYSiological (root weight); BIOchemical and BIOlogical (secondary metabolite quantification and Plasmopara viticola development) and expressions of 161 GENes involved in metabolic plant functions. The proposed approach investigated the effects of three phytostimulants on Vitis vinifera: one PDS (ASM) and one BS chelated (CH) and another enriched with seaweed (SW). Distinct responses were obtained between the PDS and the two BS. In particular, we observed the persistence of anti-mildew efficacy over time, correlated with differentiated expressions of defense genes (VvROMT, VvSAMT, VvPR8). As expected, the two BS displayed more similarities to each other than to the PDS (flavonols, anthocyanins, free salicylic acid). However, the two BS revealed differences in the modulation of genes involved in defense and primary metabolism and some genes were identified as potential markers of their action (VvWRKY1, VvLOX9, VvPOD, VvPDV1, VvXIP1, VVDnaJ). Our results highlight the common and the specific effects of the two BS and the PDS. These new tools could help in understanding the mode of action of phytostimulants in order to achieve better quality and production yield and/or as a way to limit chemical inputs in the vineyard.
Three recognized plant defense stimulators (PDS), methyl jasmonate (MeJA), benzothiadiazole (BTH) and phosphonates (PHOS), were sprayed on grapevine Vitis vinifera cuttings and conferred resistance to the biotrophic pathogen Plasmopara viticola. The effects on molecular defense-related genes and polyphenol content (stilbenes and flavanols) were revealed at 6 and 8 days post-elicitation. The transcript accumulation was consistent with the signaling pathway specific to the elicitor, salicylic acid for BTH, and jasmonic acid for MeJA, with some cross-talks. PHOS tended to modulate the defense responses like BTH. Moreover, in response to a downy mildew inoculation, the leaves pre-treated with PHOS and BTH overproduced pterostilbene, and after MeJA treatment, piceids and ε-viniferin, compared to uninoculated elicitor-treated leaves. These results provide evidence of the different modes of action of PDS and their role in sustainable viticulture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.