Humans and other animal species are endowed with the ability to sense, represent, and mentally manipulate the number of items in a set without needing to count them. One central hypothesis is that this ability relies on an automated functional system dedicated to numerosity, the perception of the discrete numerical magnitude of a set of items. This system has classically been associated with intraparietal regions, however accumulating evidence in favor of an early visual number sense calls into question the functional role of parietal regions in numerosity processing. Targeting specifically numerosity among other visual features in the earliest stages of processing requires high temporal and spatial resolution. We used frequency-tagged magnetoencephalography (MEG) to investigate the early automatic processing of numerical magnitudes and measured the steady-state brain responses specifically evoked by numerical and other visual changes in the visual scene. The neuromagnetic responses showed implicit discrimination of numerosity, total occupied area, and convex hull. The source reconstruction corresponding to the implicit discrimination responses showed common and separate sources along the ventral and dorsal visual pathways. Occipital sources attested the perceptual salience of numerosity similarly to both other implicitly discriminable visual features. Crucially, we found parietal responses uniquely associated with numerosity discrimination, showing automatic processing of numerosity in the parietal cortex, even when not relevant to the task. Taken together, these results provide further insights into the functional roles of parietal and occipital regions in numerosity encoding along the visual hierarchy.
Humans possess a numerical intuition that allows them to manipulate large non-symbolic quantities. This ability has been broadly assessed with the help of number comparison tasks involving simultaneously displayed arrays. Many authors pointed out that the manipulation (or the lack thereof) of non-numerical features deeply impacts performance in these tasks, but the specific nature of this influence is not clear. This study investigates the interaction between numerical and non-numerical quantity judgement tasks. Adult participants performed five distinct comparison tasks, each based on a target dimension: numerosity, total area, dot size, convex hull, and mean occupancy. We manipulated the relation between the target and the other dimensions to measure their respective influence on task performance. Results showed that total area and convex hull substantially affected numerosity comparisons. The number of dots conversely acted as an informative dimension when participants had to make a decision based on the total area or the convex hull. Our results illustrate that adults flexibly use non-target dimensions as visual cues to perform comparison judgements. Overall, this suggests that the influence found in numerical comparison tasks is explicit and deliberate rather than due to implicit visual integration processes.
In the field of numerical cognition, researchers conventionally assess nonsymbolic numerical abilities with the help of number comparison tasks, in which participants need to compare two arrays. Many studies emphasized that visual (non-numerical) dimensions can serve as strategic cues and influence the
Humans and other animal species are endowed with the ability to sense, represent, and mentally manipulate the number of items in a set without needing to count them. One central hypothesis is that this ability relies on an automated functional system dedicated to numerosity, the perception of the discrete numerical magnitude of a set of items. This system has classically been associated with intraparietal regions, however accumulating evidence in favor of an early visual number sense calls into question the functional role of parietal regions in numerosity processing. Targeting specifically numerosity among other visual features in the earliest stages of processing requires high temporal and spatial resolution. We used frequency-tagged magnetoencephalography (MEG) to investigate the early automatic processing of numerical magnitudes and measured the steady-state brain responses specifically evoked by numerical and other visual changes in the visual scene. The neuromagnetic responses showed implicit discrimination of numerosity, total occupied area, and convex hull. The source reconstruction corresponding to the implicit discrimination responses showed common and separate sources along the ventral and dorsal visual pathways. Occipital sources attested the perceptual salience of numerosity similarly to both other implicitly discriminable visual features. Crucially, we found parietal responses uniquely associated with numerosity discrimination, showing automatic processing of numerosity in the parietal cortex, even when not relevant to the task. Taken together, these results provide further insights into the functional roles of parietal and occipital regions in numerosity encoding along the visual hierarchy.Significance StatementApproximating the number of items in a set has been identified as a building block of mathematical cognition but the processing of numerosity is not fully understood. The natural correlation between numerosity and other visual features makes it difficult to test whether the number of items is a perceptual primitive or whether it needs to be recombined at a higher level. We used frequency-tagged magnetoencephalography to localize the implicit discrimination of numerosity within the visual hierarchy. We found that numerosity yielded occipital responses, supporting that the human visual system can grasp it at a single glance. Crucially, numerosity also yielded specific parietal responses, showing that numerosity is a perceptual primitive with a unique automatic involvement of parietal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.