Carbon isotope data from Upper Cambrian sections in three Laurentian basins in northern Utah, central Iowa, and western Newfoundland record a large positive ␦ 13 C excursion (SPICE event) of up to ؉ 5‰. Peak ␦ 13 C ratios are well dated by trilobite collections to the middle of the Steptoean Stage (Dunderbergia Zone) and occur during maximum regression associated with formation of the Sauk II-Sauk III subsequence boundary on the North American craton. Maximum regression was marked by an influx of quartz sand into carbonate-platform settings in all three widely separated basins. In northern Utah, this quartz sand formed a thick sequence known as the Worm Creek Quartzite, which marks a conspicuous interruption of carbonate deposition during the Middle to Late Cambrian in the region. In western Newfoundland, the thickness of the quartz sand unit is much reduced but still marks a brief shutdown of the carbonate factory that is unique to the Cambrian shelf succession of the area. In the central Iowa area of the cratonic interior, an upward-shallowing carbonate succession culminates in cross-stratified trilobite grainstones at the peak of the SPICE in Dunderbergia Zone time, and the lowest point on the relative-sea-level curve is associated with the occurrence of coarse quartz sand derived from the encroaching shoreface.Although it is difficult to determine precisely the departure from baseline ␦ 13 C that marks the beginning of the SPICE excursion in the stratigraphic successions analyzed, our results are consistent with a rise and subsequent fall in ␦ 13 C tracking a major regressive-transgressive event recorded across northern Laurentia. The correlation of a major ␦ 13 C excursion with regression is similar to that described for the Late Ordovician, for which the pattern has been attributed to either increased carbonate relative to terrigenous weathering rates as ice sheets covered up organic-matter-containing silicates at high latitudes or high productivity and organic-carbon burial driven by oceanic overturn. The lack of known Steptoean-age ice sheets that could have affected the ratio of carbonate to silicate weathering rates suggests that organiccarbon burial was the likely cause of the SPICE event. We suggest that increased weathering and erosion rates during relative sea-level fall (Sauk II-III) increased the burial fraction of organic carbon in an expanded region of fine-grained siliciclastic deposits in shelf and upper slope environments during the Steptoean.
Sadler's (1981) analysis of how measured sedimentation rate decreases with timescale of measurement quantified the vanishingly small fractional time preservation—completeness—of the stratigraphic record. Generalized numerical models have shown that the Sadler effect can be recovered, through the action of erosional clipping and time removal (the “stratigraphic filter”), from even fairly simple topographic sequences. However, several lines of evidence suggest that most of the missing time has not been eroded out but rather represents periods of inactivity or stasis. Low temporal completeness could also imply that the stratigraphic record is dominated by rare, extreme events, but paleotransport estimates suggest that this is not generally the case: The stratigraphic record is strangely ordinary. It appears that the organization of the topography into a hierarchy of forms also organizes the deposition into concentrated events that tend to preserve relatively ordinary conditions, albeit for very short intervals. Our understanding of time preservation would benefit from insight about how inactivity is recorded in strata; better ways to constrain localized, short-term rates of deposition; and a new focus on integrated time–space dynamics of deposition and preservation.
Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event-scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase-shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.