The transient receptor potential (TRP) vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. In this study, we describe a small molecule TRPV4 channel activator, (N-, which we have used as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca 2ϩ influx in mouse and human TRPV4-expressing human embryonic kidney (HEK) cells (EC 50 values of 18 and 2.1 nM, respectively), and it evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast, the TRPV4 activator 4␣-phorbol 12,13-didecanoate (4␣-PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4 ϩ/ϩ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4 Ϫ/Ϫ bladders. TRPV4 activation with GSK1016790A contracted TRPV4 ϩ/ϩ mouse bladders in vitro, both in the presence and absence of the urothelium, an effect that was undetected in TRPV4 Ϫ/Ϫ bladders. Consistent with the effects on TRPV4 HEK whole-cell currents, 4␣-PDD demonstrated a weak ability to contract bladder strips compared with GSK1016790A. In vivo, urodynamics in TRPV4 ϩ/ϩ and TRPV4 Ϫ/Ϫ mice revealed an enhanced bladder capacity in the TRPV4 Ϫ/Ϫ mice. Infusion of GSK1016790A into the bladders of TRPV4 ϩ/ϩ mice induced bladder overactivity with no effect in TRPV4 Ϫ/Ϫ mice. Overall TRPV4 plays an important role in urinary bladder function that includes an ability to contract the bladder as a result of the expression of TRPV4 in the UBSM.Transient receptor potential (TRP) vanilloid 4 (TRPV4), a member of the TRP superfamily of cation channels, has been implicated in a number of physiological processes, including osmoregulation (Liedtke and Friedman, 2003;Mizuno et al., 2003), hearing (Tabuchi et al., 2005), thermal and mechaniThis work was supported by GlaxoSmithKline Pharmaceuticals. Article, publication date, and citation information can be found at
The transient receptor potential (TRP) vanilloid subtype 4 (V4) is a nonselective cation channel that exhibits polymodal activation and is expressed in the endothelium, where it contributes to intracellular Ca 2ϩ homeostasis and regulation of cell volume. The purpose of the present study was to evaluate the systemic cardiovascular effects of GSK1016790A, a novel TRPV4 activator, and to examine its mechanism of action. In three species (mouse, rat, and dog), the i.v. administration of GSK1016790A induced a dose-dependent reduction in blood pressure, followed by profound circulatory collapse. In contrast, GSK1016790A had no acute cardiovascular effects in the TRPV4 Ϫ/Ϫ null mouse. Hemodynamic analyses in the dog and rat demonstrate a profound reduction in cardiac output. However, GSK1016790A had no effect on rate or contractility in the isolated, buffer-perfused rat heart, and it produced potent endothelial-dependent relaxation of rodent-isolated vascular ring segments that were abolished by nitric-oxide synthase (NOS) inhibition (N-nitro-L-arginine methyl ester; L-NAME), ruthenium red, and endothelial NOS (eNOS) gene deletion. However, the in vivo circulatory collapse was not altered by NOS inhibition (L-NAME) or eNOS gene deletion but was associated with (concentration and time appropriate) profound vascular leakage and tissue hemorrhage in the lung, intestine, and kidney. TRPV4 immunoreactivity was localized in the endothelium and epithelium in the affected organs. GSK1016790A potently induced rapid electrophysiological and morphological changes (retraction/condensation) in cultured endothelial cells. In summary, inappropriate activation of TRPV4 produces acute circulatory collapse associated with endothelial activation/injury and failure of the pulmonary microvascular permeability barrier. It will be important to determine the role of TRPV4 in disorders associated with edema and microvascular congestion.Evidence suggests that the transient receptor potential (TRP) vanilloid subtype 4 (V4), a member of the TRP family, is a thermo/osmo/mechanosensitive cationic channel that regulates intracellular Ca 2ϩ -homeostasis and cell volume (for review, see Plant and Strotmann, 2007). The TRPV4 message is expressed in cardiovascular tissues (heart and blood vessels), and evidence of functional expression has been demonstrated in vascular smooth muscle and endothelial cells (Earley, 2006;Inoue et al., 2006;Yang et al., 2006). In the endothelium, activation of TRPV4 by ligands or shearstress triggers nitric oxide (NO)-dependent vasorelaxation (Kohler et al., 2006). These studies suggest that TRPV4 activation is linked mechanistically to NO generation during the process of endothelial mechanotransduction.TRPV4 also seems to play a role in fluid distribution and integrity of endothelial/epithelial barriers. It is important to note that TRPV4 activation in the lung microvasculature Article, publication date, and citation information can be found at
1 Urotensin-II (U-II) and its G-protein-coupled receptor, GPR14, are expressed within mammalian cardiac and peripheral vascular tissue and, as such, may regulate mammalian cardiovascular function. The present study details the vasoconstrictor pro®le of this cyclic undecapeptide in di erent vascular tissues isolated from a diverse range of mammalian species (rats, mice, dogs, pigs, marmosets and cynomolgus monkeys). 2 The vasoconstrictor activity of human U-II was dependent upon the anatomical origin of the vessel studied and the species from which it was isolated. In the rat, constrictor responses were most pronounced in thoracic aortae and carotid arteries: 7log[EC 50 ]s 9.09+0.19 and 8.84+0.21, R max s 143+21 and 67+26% 60 mM KCl, respectively (compared, for example, to 7log[EC 50 ] 7.90+0.11 and R max 142+12% 60 mM KCl for endothelin-1 [ET-1] in thoracic aortae). Responses were, however, absent in mice aortae (7log [EC 50 ] 56.50). These ®ndings were further contrasted by the observation that U-II was a`coronary-selective' spasmogen in the dog (7log [EC 50 ] 9.46+0.11, R max 109+23% 60 mM KCl in LCX coronary artery), yet exhibited a broad spectrum of vasoconstrictor activity in arterial tissue from Old World monkeys (7log [EC 50 ]s range from 8.96+0.15 to 9.92+0.13, R max s from 43+16 to 527+135% 60 mM KCl). Interestingly, signi®cant di erences in reproducibility and vasoconstrictor e cacy were seen in tissue from pigs and New World primates (vessels which responded to noradrenaline, phenylephrine, KCl or ET-1 consistently). 3 Thus, human U-II is a potent, e cacious vasoconstrictor of a variety of mammalian vascular tissues. Although signi®cant species/anatomical variations exist, the data support the hypothesis that U-II in¯uences the physiological regulation of mammalian cardiovascular function. British Journal of Pharmacology (2000) 131, 1262 ± 1274 Keywords: Urotensin-II; GPR14; SENR; endothelin-1; somatostatin; vascular reactivity; spasmogen; coronary artery; endothelium; vasoconstriction Abbreviations: FLIPR,¯uorescent imaging plate reader; GPCR, guanosine triphosphate-binding protein [G-protein]-coupled receptor; LAD coronary artery, left anterior descending coronary artery; LCX, left circum¯ex coronary artery; SENR, sensory epithelial neuropeptide-like receptor; U-II, Urotensin-II IntroductionThe integrated control of cardiovascular homeostasis is achieved through a combination of direct neuronal control and systemic activation of the neurohumoral axis. The principal mammalian vasoactive factors of this axis (angiotensin-II, endothelin [ET]-1, noradrenaline) exert their haemodynamic e ects exclusively via interactions with speci®c seven transmembrane heterotrimeric G-protein-coupled receptors (GPCRs). Drugs which antagonize such interactions constitute one of the most successful classes of therapeutic agents identi®ed to date (Stadel et al., 1997; Wilson et al., 1998). Nowhere is this more evident than within the vasculature where numerous agents have been developed successfully for the clinical ...
Selective progesterone receptor modulators (SPRMs) have been suggested as therapeutic agents for treatment of gynecological disorders. One such SPRM, asoprisnil, was recently in clinical trials for treatment of uterine fibroids and endometriosis. We present the crystal structures of progesterone receptor (PR) ligand binding domain complexed with asoprisnil and the corepressors nuclear receptor corepressor (NCoR) and SMRT. This is the first report of steroid nuclear receptor crystal structures with ligand and corepressors. These structures show PR in a different conformation than PR complexed with progesterone (P4). We profiled asoprisnil in PR-dependent assays to understand further the PR-mediated mechanism of action. We confirmed previous findings that asoprisnil demonstrated antagonism, but not agonism, in a PR-B transfection assay and the T47D breast cancer cell alkaline phosphatase activity assay. Asoprisnil, but not RU486, weakly recruited the coactivators SRC-1 and AIB1. However, asoprisnil strongly recruited the corepressor NCoR in a manner similar to RU486. Unlike RU486, NCoR binding to asoprisnil-bound PR could be displaced with equal affinity by NCoR or TIF2 peptides. We further showed that it weakly activated T47D cell gene expression of Sgk-1 and PPL and antagonized P4-induced expression of both genes. In rat leiomyoma ELT3 cells, asoprisnil demonstrated partial P4-like inhibition of cyclooxygenase (COX) enzymatic activity and COX-2 gene expression. In the rat uterotrophic assay, asoprisnil demonstrated no P4-like ability to oppose estrogen. Our data suggest that asoprisnil differentially recruits coactivators and corepressors compared to RU486 or P4, and this specific cofactor interaction profile is apparently insufficient to oppose estrogenic activity in rat uterus.
These findings suggest that TMAO slows aortic lesion formation in this mouse model and may have a protective effect against atherosclerosis development in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.