In product line engineering, domain analysis is the process of analyzing related products to identify their common and variable features. This process is generally carried out by experts on the basis of existing product descriptions, which are expressed in a more or less structured way. Modeling and reasoning about product descriptions are error-prone and time consuming tasks. Feature models (FMs) constitute popular means to specify product commonalities and variabilities in a compact way, and to provide automated support to the domain analysis process. This paper aims at easing the transition from product descriptions expressed in a tabular format to FMs accurately representing them. This process is parameterized through a dedicated language and high-level directives (e.g., products/features scoping). We guarantee that the resulting FM represents the set of legal feature combinations supported by the considered products and has a readable tree hierarchy together with variability information. We report on our experiments based on public data and characterize the properties of the derived FMs.
Variability management is a key issue when building and evolving software-intensive systems, making it possible to extend, configure, customize and adapt such systems to customers' needs and specific deployment contexts. A wide form of variability can be found in extensible software systems, typically built on top of plugin-based architectures that offer a (large) number of configuration options through plugins. In an ideal world, a software architect should be able to generate a system variant on-demand, corresponding to a particular assembly of plugins. To this end, the variation points and constraints between architectural elements should be properly modeled and maintained over time (i.e., for each version of an architecture). A crucial, yet errorprone and time-consuming, task for a software architect is to build an accurate representation of the variability of an architecture, in order to prevent unsafe architectural variants and reach the highest possible level of flexibility. In this article, we propose a reverse engineering process for producing a variability model (i.e., a feature model) of a plugin-based architecture. We develop automated techniques to extract and combine different variability descriptions, including a hierarchical software architecture model, a plugin dependency model and the software architect knowledge. By computing and reasoning about differences between versions of architectural feature models, software architect can control both the variability extraction and evolution processes. The proSend offprint requests to: posed approach has been applied to a representative, large-scale plugin-based system (FraSCAti), considering different versions of its architecture. We report on our experience in this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.