Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Summary The majority of bacterial species do not grow on synthetic media. Many non-growers require growth factors from other bacteria, but the nature of these compounds is largely unknown. We show here that previously uncultured isolates from marine sediment biofilm grow on a Petri dish in the presence of cultured organisms from the same environment. The growth factors produced by one cultured helper strain were identified as new acyl-desferrioxamine siderophores. A panel of previously uncultured isolates exhibited a range of siderophore promiscuity for growth promotion. This siderophore-based approach has enabled the culturing of organisms only distantly related to previously cultured microbes. The lack of growth in the lab for many strains from this habitat stems from an inability to autonomously produce siderophores, and the resulting chemical dependence on other microorganisms regulates community establishment in the environment.
Overexpression of the HipA protein of the HipBA toxin/antitoxin module leads to multidrug tolerance in Escherichia coli. HipA is a "toxin" that causes reversible dormancy, whereas HipB is an antitoxin that binds HipA and acts as a transcriptional repressor of the hipBA operon. Comparative sequence analysis shows that HipA is a member of the phosphatidylinositol 3/4-kinase superfamily. The kinase activity of HipA was examined. HipA was autophosphorylated in the presence of ATP in vitro, and the purified protein appeared to carry a single phosphate group on serine 150. Thus, HipA is a serine kinase that is at least partially phosphorylated in vivo. Overexpression of HipA caused inhibition of cell growth and increase in persister formation. Replacing conserved aspartate 309 in the conserved kinase active site or aspartate 332 in the Mg 2؉ -binding site with glutamine produced mutant proteins that lost the ability to stop cellular growth upon overexpression. Replacing serine 150 with alanine yielded a similarly inactive protein. The mutant proteins were then examined for their ability to increase antibiotic tolerance. Cells overexpressing wild-type HipA were highly tolerant to cefotaxime, a cell wall synthesis inhibitor, to ofloxacin, a fluoroquinolone inhibitor of DNA gyrase, and to topoisomerase IV and were almost completely resistant to killing by mitomycin C, which forms DNA adducts. The mutant proteins did not protect cells from cefotaxime or ofloxacin and had an impaired ability to protect from mitomycin C. Taken together, these results suggest that the protein kinase activity of HipA is essential for persister formation.
The vast majority of microbial species are 'uncultured' and do not grow under laboratory conditions. This has led to the development of a number of methods to culture these organisms in a simulated natural environment. Approaches include placing cells in chambers that allow diffusion of compounds from the natural environment, traps enclosed with porous membranes that specifically capture organisms forming hyphae-actinobacteria and microfungi, and growth in the presence of cultivable helper species. Repeated cultivation in situ produces domesticated variants that can grow on regular media in vitro, and can be scaled up for secondary metabolite production. The co-culture approach has led to the identification of the first class of growth factors for uncultured bacteria, iron-chelating siderophores. It appears that many uncultured organisms from diverse taxonomical groups have lost the ability to produce siderophores, and depend on neighboring species for growth. The new cultivation approaches allow for the exploitation of the secondary metabolite potential of the previously inaccessible microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.