HER2-positive breast cancer has long proven to be a clinically distinct class of breast cancers for which several targeted therapies are now available. However, resistance to the treatment associated with specific gene expressions or mutations has been observed, revealing the underlying diversity of these cancers. Therefore, understanding the full extent of the HER2-positive disease heterogeneity still remains challenging. Here we carry out an in-depth genomic characterization of 64 HER2-positive breast tumour genomes that exhibit four subgroups, based on the expression data, with distinctive genomic features in terms of somatic mutations, copy-number changes or structural variations. The results suggest that, despite being clinically defined by a specific gene amplification, HER2-positive tumours melt into the whole luminal–basal breast cancer spectrum rather than standing apart. The results also lead to a refined ERBB2 amplicon of 106 kb and show that several cases of amplifications are compatible with a breakage–fusion–bridge mechanism.
Luminal B breast cancers represent a fraction of oestrogen receptor (ER)-positive tumours associated with poor recurrence-free and disease-specific survival in all adjuvant systemic treatment categories including hormone therapy alone. Identification of specific signalling pathways driving luminal B biology is paramount to improve treatment. We have studied 100 luminal breast tumours by combined analysis of genome copy number aberrations and gene expression. We show that amplification of the ZNF703 gene, located in chromosomal region 8p12, preferentially occurs in luminal B tumours. We explored the functional role of ZNF703 in luminal B tumours by overexpressing ZNF703 in the MCF7 luminal cell line. Using mass spectrometry, we identified ZNF703 as a co-factor of a nuclear complex comprising DCAF7, PHB2 and NCOR2. ZNF703 expression results in the activation of stem cell-related gene expression leading to an increase in cancer stem cells. Moreover, we show that ZNF703 is implicated in the regulation of ER and E2F1 transcription factor. These findings point out the prominent role of ZNF703 in transcription modulation, stem cell regulation and luminal B oncogenesis.
Claudin-low breast cancers are aggressive tumors defined by the low expression of key components of cellular junctions, associated with mesenchymal and stemness features. Although they are generally considered as the most primitive breast malignancies, their histogenesis remains elusive. Here we show that this molecular subtype of breast cancers exhibits a significant diversity, comprising three main subgroups that emerge from unique evolutionary processes. Genetic, gene methylation and gene expression analyses reveal that two of the subgroups relate, respectively, to luminal breast cancers and basal-like breast cancers through the activation of an EMT process over the course of tumor progression. The third subgroup is closely related to normal human mammary stem cells. This unique subgroup of breast cancers shows a paucity of genomic aberrations and a low frequency of TP53 mutations, supporting the emerging notion that the intrinsic properties of the cell-of-origin constitute a major determinant of the genetic history of tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.