Abstract. The goal of this roadmap paper is to summarize the state-ofthe-art and to identify critical challenges for the systematic software engineering of self-adaptive systems. The paper is partitioned into four parts, one for each of the identified essential views of self-adaptation: modelling dimensions, requirements, engineering, and assurances. For each view, we present the state-of-the-art and the challenges that our community must address. This roadmap paper is a result of the Dagstuhl Seminar 08031 on "Software Engineering for Self-Adaptive Systems, " which took place in January 2008.
Composite systems are generally comprised of heterogeneous components whose specifications are developed by many development participants. The requirements of such systems are invariably elicited from multiple perspectives that overlap, complement, and contradict each other. Furthermore, these requirements are generally developed and specified using multiple methods and notations, respectively. It is therefore necessary to express and check the relationships between the resultant specification fragments. In this paper, we deploy multiple ViewPoints that hold partial requirements specifications, described and developed using different representation schemes and development strategies. We discuss the notion of inter-Viewpoint communication in the context of this Viewpoints framework, and propose a general model for Viewpoint interaction and integration. We elaborate on some of the requirements for expressing and enacting inter-Viewpoint relationships-the vehicles for consistency checking and inconsistency management. Finally, though we use simple fragments of the requirements specification method CORE to illustrate various components of our work, we also outline a number of larger case studies that we have used to validate our framework. Our computer-based Viewpoints support environment, The Viewer, is also briefly described.
This paper outlines a framework which supports the use of multiple perspectives in system development, and provides a means for developing and applying systems design methods. The framework uses "viewpoints" to partition the system specification, the development method and the formal representations used to express the system specifications. This VOSE (viewpoint-oriented systems engineering) framework can be used to support the design of heterogeneous and composite systems. We illustrate the use of the framework with a small example drawn from composite system development and give an account of prototype automated tools based on the framework.
SARS-CoV-2 has spread across the world, causing high mortality and unprecedented restrictions on social and economic activity. Policymakers are assessing how best to navigate through the ongoing epidemic, with models being used to predict the spread of infection and assess the impact of public health measures. Here, we present OpenABM-Covid19: an agent-based simulation of the epidemic including detailed age-stratification and realistic social networks. By default the model is parameterised to UK demographics and calibrated to the UK epidemic, however, it can easily be re-parameterised for other countries. OpenABM-Covid19 can evaluate non-pharmaceutical interventions, including both manual and digital contact tracing. It can simulate a population of 1 million people in seconds per day allowing parameter sweeps and formal statistical model-based inference. The code is open-source and has been developed by teams both inside and outside academia, with an emphasis on formal testing, documentation, modularity and transparency. A key feature of OpenABM-Covid19 is its Python interface, which has allowed scientists and policymakers to simulate dynamic packages of interventions and help compare options to suppress the COVID-19 epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.