Abstract--Fall detection of the elderly is a major public health problem. Thus it has generated a wide range of applied research and prompted the development of telemonitoring systems to enable the early diagnosis of fall conditions. This article is a survey of systems, algorithms and sensors, for the automatic early detection of the fall of elderly persons. It points out the difficulty to compare the performances of the different systems due to the lack of a common framework. It then proposes a procedure for this evaluation.
Abstract-By 2050, about a third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international ADL or the French AGGIR scales, by automatically classifying the different Activities of Daily Living performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, Infra-Red Presence Sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs on postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors, is then used to classify each temporal frame into one of the activities of daily living that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using Support Vector Machines. We performed a one-hour experimentation with 13 young and healthy subjects to determine the models of the different activities and then we tested the classification algorithm (cross-validation) with real data.
Over the years, smartphones have become tools for scientific and clinical research. They can, for instance, be used to assess range of motion and joint angle measurement. In this paper, our aim was to determine if smartphones are reliable and accurate enough for clinical motion research. This work proposes an evaluation of different smartphone sensors performance and different manufacturer algorithm performances with the comparison to the gold standard, an industrial robotic arm with an actual standard use inertial motion unit in clinical measurement, an Xsens product. Both dynamic and static protocols were used to perform these comparisons. Root Mean Square (RMS) mean values results for static protocol are under 0.3° for the different smartphones. RMS mean values results for dynamic protocol are more prone to bias induced by Euler angle representation. Statistical results prove that there are no filter effect on results for both protocols and no hardware effect. Smartphones performance can be compared to the Xsens gold standard for clinical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.